Suppr超能文献

在扫视抑制过程中适应性反应时间调整的神经基础。

Neural basis of adaptive response time adjustment during saccade countermanding.

机构信息

Center for Integrative & Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240, USA.

出版信息

J Neurosci. 2011 Aug 31;31(35):12604-12. doi: 10.1523/JNEUROSCI.1868-11.2011.

Abstract

Humans and macaque monkeys adjust their response time adaptively in stop-signal (countermanding) tasks, responding slower after stop-signal trials than after control trials with no stop signal. We investigated the neural mechanism underlying this adaptive response time adjustment in macaque monkeys performing a saccade countermanding task. Earlier research showed that movements are initiated when the random accumulation of presaccadic movement-related activity reaches a fixed threshold. We found that a systematic delay in response time after stop-signal trials was accomplished not through a change of threshold, baseline, or accumulation rate, but instead through a change in the time when activity first began to accumulate. The neurons underlying movement initiation have been identified with stochastic accumulator models of response time performance. Therefore, this new result provides surprising new insights into the neural instantiation of stochastic accumulator models and the mechanisms through which executive control can be exerted.

摘要

人类和猕猴在停止信号(撤销)任务中会自适应地调整反应时间,在有停止信号的试验中比没有停止信号的控制试验中反应更慢。我们研究了猕猴在执行扫视撤销任务时,这种自适应反应时间调整的神经机制。早期的研究表明,当与预扫视运动相关的活动随机积累达到固定阈值时,运动就会开始。我们发现,在停止信号试验后反应时间的系统延迟不是通过改变阈值、基线或积累率来实现的,而是通过改变活动开始积累的时间来实现的。运动起始的神经元已经通过反应时间性能的随机累加器模型得到了识别。因此,这个新的结果为随机累加器模型的神经实现以及执行控制可以施加的机制提供了令人惊讶的新见解。

相似文献

1
Neural basis of adaptive response time adjustment during saccade countermanding.
J Neurosci. 2011 Aug 31;31(35):12604-12. doi: 10.1523/JNEUROSCI.1868-11.2011.
2
Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding.
J Neurophysiol. 2009 Dec;102(6):3091-100. doi: 10.1152/jn.00270.2009. Epub 2009 Sep 23.
3
Relation of frontal eye field activity to saccade initiation during a countermanding task.
Exp Brain Res. 2008 Sep;190(2):135-51. doi: 10.1007/s00221-008-1455-0. Epub 2008 Jul 5.
4
Influence of history on saccade countermanding performance in humans and macaque monkeys.
Vision Res. 2007 Jan;47(1):35-49. doi: 10.1016/j.visres.2006.08.032. Epub 2006 Nov 1.
5
Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity.
J Neurophysiol. 1998 Feb;79(2):817-34. doi: 10.1152/jn.1998.79.2.817.
6
Controlled movement processing: superior colliculus activity associated with countermanded saccades.
J Neurosci. 2003 Jul 23;23(16):6480-9. doi: 10.1523/JNEUROSCI.23-16-06480.2003.
7
Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model.
J Neurosci. 2009 Jul 15;29(28):9059-71. doi: 10.1523/JNEUROSCI.6164-08.2009.
8
Contextual response time adaptation in the countermanding performance of rats.
Neuroscience. 2016 Nov 19;337:200-217. doi: 10.1016/j.neuroscience.2016.09.009. Epub 2016 Sep 16.
9
Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.
J Neurophysiol. 2015 Aug;114(2):879-92. doi: 10.1152/jn.00047.2015. Epub 2015 Jun 10.
10
Optimal performance in a countermanding saccade task.
Brain Res. 2010 Mar 8;1318:178-87. doi: 10.1016/j.brainres.2009.12.018. Epub 2009 Dec 23.

引用本文的文献

1
Deep Learning Improves Parameter Estimation in Reinforcement Learning Models.
bioRxiv. 2025 Jun 18:2025.03.21.644663. doi: 10.1101/2025.03.21.644663.
2
Force monitoring reveals single trial dynamics of motor control in a stop signal task.
Physiol Rep. 2024 Nov;12(22):e70127. doi: 10.14814/phy2.70127.
3
Parkinson's disease impairs cortical sensori-motor decision-making cascades.
Brain Commun. 2024 Mar 14;6(2):fcae065. doi: 10.1093/braincomms/fcae065. eCollection 2024.
4
Neuronal activity in posterior parietal cortex area LIP is not sufficient for saccadic eye movement production.
Front Integr Neurosci. 2023 Nov 24;17:1251431. doi: 10.3389/fnint.2023.1251431. eCollection 2023.
5
Neural mechanisms for executive control of speed-accuracy trade-off.
Cell Rep. 2023 Nov 28;42(11):113422. doi: 10.1016/j.celrep.2023.113422. Epub 2023 Nov 10.
6
Altered basal ganglia output during self-restraint.
Elife. 2022 Nov 2;11:e82143. doi: 10.7554/eLife.82143.
7
Functional architecture of executive control and associated event-related potentials in macaques.
Nat Commun. 2022 Oct 21;13(1):6270. doi: 10.1038/s41467-022-33942-1.
8
Identifying control ensembles for information processing within the cortico-basal ganglia-thalamic circuit.
PLoS Comput Biol. 2022 Jun 23;18(6):e1010255. doi: 10.1371/journal.pcbi.1010255. eCollection 2022 Jun.
9
The unidirectional prosaccade switch-cost: no evidence for the passive dissipation of an oculomotor task-set inertia.
Exp Brain Res. 2022 Aug;240(7-8):2061-2071. doi: 10.1007/s00221-022-06394-8. Epub 2022 Jun 21.
10
Salience by competitive and recurrent interactions: Bridging neural spiking and computation in visual attention.
Psychol Rev. 2022 Oct;129(5):1144-1182. doi: 10.1037/rev0000366. Epub 2022 Apr 7.

本文引用的文献

2
Supplementary motor area exerts proactive and reactive control of arm movements.
J Neurosci. 2010 Nov 3;30(44):14657-75. doi: 10.1523/JNEUROSCI.2669-10.2010.
3
Nonindependent and nonstationary response times in stopping and stepping saccade tasks.
Atten Percept Psychophys. 2010 Oct;72(7):1913-29. doi: 10.3758/APP.72.7.1913.
4
ERP correlates of response inhibition after-effects in the stop signal task.
Exp Brain Res. 2010 Oct;206(4):351-8. doi: 10.1007/s00221-010-2369-1. Epub 2010 Sep 28.
5
Neurally constrained modeling of perceptual decision making.
Psychol Rev. 2010 Oct;117(4):1113-43. doi: 10.1037/a0020311.
6
Medial frontal cortex motivates but does not control movement initiation in the countermanding task.
J Neurosci. 2010 Feb 3;30(5):1968-82. doi: 10.1523/JNEUROSCI.4509-09.2010.
7
Optimal performance in a countermanding saccade task.
Brain Res. 2010 Mar 8;1318:178-87. doi: 10.1016/j.brainres.2009.12.018. Epub 2009 Dec 23.
8
Role of supplementary eye field in saccade initiation: executive, not direct, control.
J Neurophysiol. 2010 Feb;103(2):801-16. doi: 10.1152/jn.00221.2009. Epub 2009 Nov 25.
9
Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding.
J Neurophysiol. 2009 Dec;102(6):3091-100. doi: 10.1152/jn.00270.2009. Epub 2009 Sep 23.
10
Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model.
J Neurosci. 2009 Jul 15;29(28):9059-71. doi: 10.1523/JNEUROSCI.6164-08.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验