Suppr超能文献

线虫 TPR-GoLoco 蛋白的动态定位通过外在信号来介导有丝分裂纺锤体的定向。

Dynamic localization of C. elegans TPR-GoLoco proteins mediates mitotic spindle orientation by extrinsic signaling.

机构信息

Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Development. 2011 Oct;138(20):4411-22. doi: 10.1242/dev.070979. Epub 2011 Sep 8.

Abstract

Cell divisions are sometimes oriented by extrinsic signals, by mechanisms that are poorly understood. Proteins containing TPR and GoLoco-domains (C. elegans GPR-1/2, Drosophila Pins, vertebrate LGN and AGS3) are candidates for mediating mitotic spindle orientation by extrinsic signals, but the mechanisms by which TPR-GoLoco proteins may localize in response to extrinsic cues are not well defined. The C. elegans TPR-GoLoco protein pair GPR-1/2 is enriched at a site of contact between two cells - the endomesodermal precursor EMS and the germline precursor P(2) - and both cells align their divisions toward this shared cell-cell contact. To determine whether GPR-1/2 is enriched at this site within both cells, we generated mosaic embryos with GPR-1/2 bearing a different fluorescent tag in different cells. We were surprised to find that GPR-1/2 distribution is symmetric in EMS, where GPR-1/2 had been proposed to function as an asymmetric cue for spindle orientation. Instead, GPR-1/2 is asymmetrically distributed only in P(2). We demonstrate a role for normal GPR-1/2 localization in P(2) division orientation. We show that MES-1/Src signaling plays an instructive role in P(2) for asymmetric GPR-1/2 localization and normal spindle orientation. We ruled out a model in which signaling localizes GPR-1/2 by locally inhibiting LET-99, a GPR-1/2 antagonist. Instead, asymmetric GPR-1/2 distribution is established by destabilization at one cell contact, diffusion, and trapping at another cell contact. Once the mitotic spindle of P(2) is oriented normally, microtubule-dependent removal of GPR-1/2 prevented excess accumulation, in an apparent negative-feedback loop. These results highlight the role of dynamic TPR-GoLoco protein localization as a key mediator of mitotic spindle alignment in response to instructive, external cues.

摘要

细胞分裂有时受到外在信号的定向影响,但其中的机制还不甚清楚。含有 TPR 和 GoLoco 结构域的蛋白质(秀丽隐杆线虫的 GPR-1/2、果蝇的 Pins、脊椎动物的 LGN 和 AGS3)可能作为连接有丝分裂纺锤体定向的中介,通过外在信号发挥作用,但 TPR-GoLoco 蛋白如何响应外在线索进行定位的机制尚不清楚。秀丽隐杆线虫 TPR-GoLoco 蛋白对 GPR-1/2 在两个细胞的接触部位(内胚层前体 EMS 和生殖细胞前体 P(2))富集,这两个细胞将它们的分裂方向都对准这个共同的细胞-细胞接触点。为了确定 GPR-1/2 是否在这两个细胞的这个位置富集,我们在不同的细胞中产生了带有不同荧光标签的 GPR-1/2 嵌合体胚胎。我们惊讶地发现,GPR-1/2 在 EMS 中的分布是对称的,而之前认为 GPR-1/2 在那里作为纺锤体定向的不对称信号。相反,GPR-1/2 仅在 P(2)中不对称分布。我们证明了 GPR-1/2 在 P(2)分裂方向上的正常定位的作用。我们表明,MES-1/Src 信号在 P(2)中发挥了定向作用,导致 GPR-1/2 不对称定位和正常纺锤体定向。我们排除了一种通过局部抑制 GPR-1/2 拮抗剂 LET-99 来定位 GPR-1/2 的信号模型。相反,GPR-1/2 的不对称分布是通过在一个细胞接触处的不稳定性建立的,然后扩散并在另一个细胞接触处被捕获。一旦 P(2)的有丝分裂纺锤体正常定向,微管依赖性去除 GPR-1/2 可以防止其过度积累,这是一个明显的负反馈回路。这些结果突出了动态 TPR-GoLoco 蛋白定位作为连接有丝分裂纺锤体对准反应的关键中介物的作用,该反应受到指令性外部信号的影响。

相似文献

1
Dynamic localization of C. elegans TPR-GoLoco proteins mediates mitotic spindle orientation by extrinsic signaling.
Development. 2011 Oct;138(20):4411-22. doi: 10.1242/dev.070979. Epub 2011 Sep 8.
3
Mitotic Spindle Positioning in the EMS Cell of Caenorhabditis elegans Requires LET-99 and LIN-5/NuMA.
Genetics. 2016 Nov;204(3):1177-1189. doi: 10.1534/genetics.116.192831. Epub 2016 Sep 26.
6
Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos.
Science. 2003 Jun 20;300(5627):1957-61. doi: 10.1126/science.1084146. Epub 2003 May 15.
7
How signaling between cells can orient a mitotic spindle.
Semin Cell Dev Biol. 2011 Oct;22(8):842-9. doi: 10.1016/j.semcdb.2011.07.011. Epub 2011 Jul 23.
8
Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo.
Curr Biol. 2003 Jun 17;13(12):1029-37. doi: 10.1016/s0960-9822(03)00371-3.
9
A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C elegans.
Genes Dev. 2003 May 15;17(10):1225-39. doi: 10.1101/gad.1081203. Epub 2003 May 2.
10
Apical PAR protein caps orient the mitotic spindle in C. elegans early embryos.
Curr Biol. 2023 Oct 23;33(20):4312-4329.e6. doi: 10.1016/j.cub.2023.08.069. Epub 2023 Sep 19.

引用本文的文献

2
Diversity of activator of G-protein signaling (AGS)-family proteins and their impact on asymmetric cell division across taxa.
Dev Biol. 2020 Sep 15;465(2):89-99. doi: 10.1016/j.ydbio.2020.07.004. Epub 2020 Jul 18.
3
Mechanisms of Spindle Positioning: Lessons from Worms and Mammalian Cells.
Biomolecules. 2019 Feb 25;9(2):80. doi: 10.3390/biom9020080.
4
A CRISPR Tagging-Based Screen Reveals Localized Players in Wnt-Directed Asymmetric Cell Division.
Genetics. 2018 Mar;208(3):1147-1164. doi: 10.1534/genetics.117.300487. Epub 2018 Jan 18.
5
Mitotic Spindle Positioning in the EMS Cell of Caenorhabditis elegans Requires LET-99 and LIN-5/NuMA.
Genetics. 2016 Nov;204(3):1177-1189. doi: 10.1534/genetics.116.192831. Epub 2016 Sep 26.
6
Cell Fate Decision Making through Oriented Cell Division.
J Dev Biol. 2015 Dec;3(4):129-157. doi: 10.3390/jdb3040129. Epub 2015 Dec 14.
7
Polarity and cell division orientation in the cleavage embryo: from worm to human.
Mol Hum Reprod. 2016 Oct;22(10):691-703. doi: 10.1093/molehr/gav068. Epub 2015 Dec 9.
8
Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and Caenorhabditis elegans Gastrulation.
Genetics. 2016 Jan;202(1):123-39. doi: 10.1534/genetics.115.183137. Epub 2015 Oct 4.
9
Asymmetric transcript discovery by RNA-seq in C. elegans blastomeres identifies neg-1, a gene important for anterior morphogenesis.
PLoS Genet. 2015 Apr 13;11(4):e1005117. doi: 10.1371/journal.pgen.1005117. eCollection 2015 Apr.
10
The special case of hepatocytes: unique tissue architecture calls for a distinct mode of cell division.
Bioarchitecture. 2014 Mar-Apr;4(2):47-52. doi: 10.4161/bioa.29012. Epub 2014 Apr 25.

本文引用的文献

1
Overcoming redundancy: an RNAi enhancer screen for morphogenesis genes in Caenorhabditis elegans.
Genetics. 2011 Jul;188(3):549-64. doi: 10.1534/genetics.111.129486. Epub 2011 Apr 28.
2
A lateral belt of cortical LGN and NuMA guides mitotic spindle movements and planar division in neuroepithelial cells.
J Cell Biol. 2011 Apr 4;193(1):141-54. doi: 10.1083/jcb.201101039. Epub 2011 Mar 28.
3
Mitotic spindle misorientation in cancer--out of alignment and into the fire.
J Cell Sci. 2011 Apr 1;124(Pt 7):1007-16. doi: 10.1242/jcs.081406.
5
Asymmetric cell divisions promote Notch-dependent epidermal differentiation.
Nature. 2011 Feb 17;470(7334):353-8. doi: 10.1038/nature09793.
6
Codon adaptation-based control of protein expression in C. elegans.
Nat Methods. 2011 Mar;8(3):250-2. doi: 10.1038/nmeth.1565. Epub 2011 Jan 30.
8
Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins.
Curr Biol. 2010 Oct 26;20(20):1809-18. doi: 10.1016/j.cub.2010.09.032. Epub 2010 Oct 7.
9
E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells.
PLoS One. 2010 Aug 31;5(8):e12473. doi: 10.1371/journal.pone.0012473.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验