Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
J Biomed Mater Res B Appl Biomater. 2012 Jan;100(1):58-67. doi: 10.1002/jbm.b.31922. Epub 2011 Sep 8.
Metal stents are commonly used to revascularize occluded arteries. A bioabsorbable metal stent that harmlessly erodes away over time may minimize the normal chronic risks associated with permanent implants. However, there is no simple, low-cost method of introducing candidate materials into the arterial environment. Here, we developed a novel experimental model where a biomaterial wire is implanted into a rat artery lumen (simulating bioabsorbable stent blood contact) or artery wall (simulating bioabsorbable stent matrix contact). We use this model to clarify the corrosion mechanism of iron (≥99.5 wt %), which is a candidate bioabsorbable stent material due to its biocompatibility and mechanical strength. We found that iron wire encapsulation within the arterial wall extracellular matrix resulted in substantial biocorrosion by 22 days, with a voluminous corrosion product retained within the vessel wall at 9 months. In contrast, the blood-contacting luminal implant experienced minimal biocorrosion at 9 months. The importance of arterial blood versus arterial wall contact for regulating biocorrosion was confirmed with magnesium wires. We found that magnesium was highly corroded when placed in the arterial wall but was not corroded when exposed to blood in the arterial lumen for 3 weeks. The results demonstrate the capability of the vascular implantation model to conduct rapid in vivo assessments of vascular biomaterial corrosion behavior and to predict long-term biocorrosion behavior from material analyses. The results also highlight the critical role of the arterial environment (blood vs. matrix contact) in directing the corrosion behavior of biodegradable metals.
金属支架通常用于使闭塞的动脉再通。一种可生物降解的金属支架,随着时间的推移无害地侵蚀,可能会最大限度地降低与永久性植入物相关的正常慢性风险。然而,目前没有简单、低成本的方法将候选材料引入动脉环境中。在这里,我们开发了一种新的实验模型,其中将生物材料丝植入大鼠动脉管腔(模拟可生物降解支架与血液的接触)或动脉壁(模拟可生物降解支架基质的接触)。我们使用该模型来阐明铁(≥99.5wt%)的腐蚀机制,铁由于其生物相容性和机械强度,是一种候选的可生物降解支架材料。我们发现,铁丝在动脉壁细胞外基质内的包裹导致了在 22 天内发生了大量的生物腐蚀,大量的腐蚀产物在 9 个月时保留在血管壁内。相比之下,在 9 个月时,与血液接触的管腔植入体经历了最小的生物腐蚀。用镁丝证实了动脉血与动脉壁接触对调节生物腐蚀的重要性。我们发现,当镁丝置于动脉壁时,其被高度腐蚀,但当暴露于动脉管腔中的血液中 3 周时,其并未被腐蚀。研究结果表明,血管植入模型具有进行血管生物材料腐蚀行为快速体内评估的能力,并能够从材料分析中预测长期生物腐蚀行为。结果还突出了动脉环境(血液与基质接触)在指导可生物降解金属腐蚀行为方面的关键作用。