Suppr超能文献

与酶相关的异常糖基化作为癌症生物标志物。

Aberrant glycosylation associated with enzymes as cancer biomarkers.

机构信息

Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA.

出版信息

Clin Proteomics. 2011 Jun 3;8(1):7. doi: 10.1186/1559-0275-8-7.

Abstract

BACKGROUND

One of the new roles for enzymes in personalized medicine builds on a rational approach to cancer biomarker discovery using enzyme-associated aberrant glycosylation. A hallmark of cancer, aberrant glycosylation is associated with differential expressions of enzymes such as glycosyltransferase and glycosidases. The aberrant expressions of the enzymes in turn cause cancer cells to produce glycoproteins with specific cancer-associated aberrations in glycan structures.

CONTENT

In this review we provide examples of cancer biomarker discovery using aberrant glycosylation in three areas. First, changes in glycosylation machinery such as glycosyltransferases/glycosidases could be used as cancer biomarkers. Second, most of the clinically useful cancer biomarkers are glycoproteins. Discovery of specific cancer-associated aberrations in glycan structures of these existing biomarkers could improve their cancer specificity, such as the discovery of AFP-L3, fucosylated glycoforms of AFP. Third, cancer-associated aberrations in glycan structures provide a compelling rationale for discovering new biomarkers using glycomic and glycoproteomic technologies.

SUMMARY

As a hallmark of cancer, aberrant glycosylation allows for the rational design of biomarker discovery efforts. But more important, we need to translate these biomarkers from discovery to clinical diagnostics using good strategies, such as the lessons learned from translating the biomarkers discovered using proteomic technologies to OVA 1, the first FDA-cleared In Vitro Diagnostic Multivariate Index Assay (IVDMIA). These lessons, providing important guidance in current efforts in biomarker discovery and translation, are applicable to the discovery of aberrant glycosylation associated with enzymes as cancer biomarkers as well.

摘要

背景

酶在个性化医学中的新作用之一是基于使用与酶相关的异常糖基化来发现癌症生物标志物的合理方法。异常糖基化是癌症的一个标志,与糖基转移酶和糖苷酶等酶的差异表达有关。这些酶的异常表达反过来又导致癌细胞产生具有特定癌症相关异常糖链结构的糖蛋白。

内容

在这篇综述中,我们提供了在三个领域使用异常糖基化发现癌症生物标志物的示例。首先,糖基化机制(如糖基转移酶/糖苷酶)的变化可用作癌症生物标志物。其次,大多数临床有用的癌症生物标志物都是糖蛋白。发现这些现有生物标志物中糖链结构的特定癌症相关异常,可以提高它们的癌症特异性,例如 AFP-L3、AFP 的岩藻糖基化糖型的发现。第三,糖链结构中的癌症相关异常为使用糖组学和糖蛋白组学技术发现新的生物标志物提供了强有力的理由。

总结

作为癌症的一个标志,异常糖基化允许对生物标志物的发现进行合理的设计。但更重要的是,我们需要使用良好的策略将这些生物标志物从发现转化为临床诊断,例如从使用蛋白质组学技术发现的生物标志物转化为 OVA1 的经验教训,这是第一个获得 FDA 批准的体外诊断多元指数分析(IVDMIA)。这些经验教训为当前生物标志物发现和转化的努力提供了重要的指导,对于发现与酶相关的异常糖基化作为癌症生物标志物同样适用。

相似文献

4
Capitalizing glycomic changes for improved biomarker-based cancer diagnostics.利用糖组学变化改进基于生物标志物的癌症诊断
Explor Target Antitumor Ther. 2023;4(3):366-395. doi: 10.37349/etat.2023.00140. Epub 2023 Jun 28.

引用本文的文献

本文引用的文献

10
Over-expression of ST3Gal-I promotes mammary tumorigenesis.ST3Gal-I 的过表达促进乳腺肿瘤发生。
Glycobiology. 2010 Oct;20(10):1241-50. doi: 10.1093/glycob/cwq085. Epub 2010 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验