Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA.
Biostatistics. 2012 Jan;13(1):61-73. doi: 10.1093/biostatistics/kxr026. Epub 2011 Sep 13.
Mixed models are commonly used to represent longitudinal or repeated measures data. An additional complication arises when the response is censored, for example, due to limits of quantification of the assay used. While Gaussian random effects are routinely assumed, little work has characterized the consequences of misspecifying the random-effects distribution nor has a more flexible distribution been studied for censored longitudinal data. We show that, in general, maximum likelihood estimators will not be consistent when the random-effects density is misspecified, and the effect of misspecification is likely to be greatest when the true random-effects density deviates substantially from normality and the number of noncensored observations on each subject is small. We develop a mixed model framework for censored longitudinal data in which the random effects are represented by the flexible seminonparametric density and show how to obtain estimates in SAS procedure NLMIXED. Simulations show that this approach can lead to reduction in bias and increase in efficiency relative to assuming Gaussian random effects. The methods are demonstrated on data from a study of hepatitis C virus.
混合模型通常用于表示纵向或重复测量数据。当响应被删失时,例如由于所用测定法的定量极限,会出现额外的复杂性。虽然通常假设高斯随机效应,但很少有研究描述随机效应分布指定不当的后果,也没有研究更灵活的分布用于删失的纵向数据。我们表明,一般来说,当随机效应密度被指定不当时,最大似然估计量将不一致,并且当真实随机效应密度与正态性有很大偏差并且每个受试者的非删失观测值数量较少时,指定不当的影响可能最大。我们开发了一种用于删失纵向数据的混合模型框架,其中随机效应由灵活的半非参数密度表示,并展示了如何在 SAS 程序 NLMIXED 中获得估计值。模拟表明,与假设高斯随机效应相比,这种方法可以减少偏差并提高效率。该方法在丙型肝炎病毒研究的数据上进行了演示。