Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
Plant Physiol. 2011 Nov;157(3):1114-27. doi: 10.1104/pp.111.183939. Epub 2011 Sep 15.
Mitochondrial complex II (succinate dehydrogenase [SDH]) plays roles both in the tricarboxylic acid cycle and the respiratory electron transport chain. In Arabidopsis (Arabidopsis thaliana), its flavoprotein subunit is encoded by two nuclear genes, SDH1-1 and SDH1-2. Here, we characterize heterozygous SDH1-1/sdh1-1 mutant plants displaying a 30% reduction in SDH activity as well as partially silenced plants obtained by RNA interference. We found that these plants displayed significantly higher CO(2) assimilation rates and enhanced growth than wild-type plants. There was a strong correlation between CO(2) assimilation and stomatal conductance, and both mutant and silenced plants displayed increased stomatal aperture and density. By contrast, no significant differences were found for dark respiration, chloroplastic electron transport rate, CO(2) uptake at saturating concentrations of CO(2), or biochemical parameters such as the maximum rates of carboxylation by Rubisco and of photosynthetic electron transport. Thus, photosynthesis is enhanced in SDH-deficient plants by a mechanism involving a specific effect on stomatal function that results in improved CO(2) uptake. Metabolic and transcript profiling revealed that mild deficiency in SDH results in limited effects on metabolism and gene expression, and data suggest that decreases observed in the levels of some amino acids were due to a higher flux to proteins and other nitrogen-containing compounds to support increased growth. Strikingly, SDH1-1/sdh1-1 seedlings grew considerably better in nitrogen-limiting conditions. Thus, a subtle metabolic alteration may lead to changes in important functions such as stomatal function and nitrogen assimilation.
线粒体复合物 II(琥珀酸脱氢酶 [SDH])在三羧酸循环和呼吸电子传递链中均发挥作用。在拟南芥(Arabidopsis thaliana)中,其黄素蛋白亚基由两个核基因 SDH1-1 和 SDH1-2 编码。在这里,我们对杂种 SDH1-1/sdh1-1 突变体植物进行了表征,这些植物的 SDH 活性降低了 30%,并且部分沉默的植物是通过 RNA 干扰获得的。我们发现,这些植物的 CO2 同化率显著提高,生长速度加快。CO2 同化率与气孔导度之间存在很强的相关性,突变体和沉默植物的气孔开度和密度均增加。相比之下,暗呼吸、叶绿体电子传递率、CO2 在饱和 CO2 浓度下的吸收以及生物化学参数(如 Rubisco 的羧化最大速率和光合电子传递的最大速率)没有发现显著差异。因此,SDH 缺陷植物中光合作用的增强是通过一种特定的气孔功能机制实现的,这种机制导致 CO2 吸收增加。代谢和转录谱分析表明,SDH 轻度缺乏对代谢和基因表达的影响有限,数据表明,一些氨基酸水平的降低是由于流向蛋白质和其他含氮化合物的通量增加,以支持生长的增加。引人注目的是,SDH1-1/sdh1-1 幼苗在氮限制条件下的生长情况要好得多。因此,微妙的代谢改变可能导致重要功能(如气孔功能和氮同化)的改变。