Suppr超能文献

生存结局医师随机试验中统计方法的比较。

A comparison of statistical approaches for physician-randomized trials with survival outcomes.

机构信息

Orthopedics and Arthritis Center for Outcomes Research, Department of Orthopedics, Brigham and Women's Hospital, Boston, MA 02115, USA.

出版信息

Contemp Clin Trials. 2012 Jan;33(1):104-15. doi: 10.1016/j.cct.2011.08.008. Epub 2011 Sep 6.

Abstract

This study compares methods for analyzing correlated survival data from physician-randomized trials of health care quality improvement interventions. Several proposed methods adjust for correlated survival data; however the most suitable method is unknown. Applying the characteristics of our study example, we performed three simulation studies to compare conditional, marginal, and non-parametric methods for analyzing clustered survival data. We simulated 1000 datasets using a shared frailty model with (1) fixed cluster size, (2) variable cluster size, and (3) non-lognormal random effects. Methods of analyses included: the nonlinear mixed model (conditional), the marginal proportional hazards model with robust standard errors, the clustered logrank test, and the clustered permutation test (non-parametric). For each method considered we estimated Type I error, power, mean squared error, and the coverage probability of the treatment effect estimator. We observed underestimated Type I error for the clustered logrank test. The marginal proportional hazards method performed well even when model assumptions were violated. Nonlinear mixed models were only advantageous when the distribution was correctly specified.

摘要

本研究比较了分析医疗质量改进干预措施的医师随机试验相关生存数据的方法。有几种提出的方法可用于调整相关生存数据;然而,最合适的方法尚不清楚。应用我们研究示例的特点,我们进行了三项模拟研究,以比较分析聚类生存数据的条件、边缘和非参数方法。我们使用具有(1)固定聚类大小、(2)可变聚类大小和(3)非对数正态随机效应的共享脆弱性模型模拟了 1000 个数据集。分析方法包括:非线性混合模型(条件)、具有稳健标准误差的边缘比例风险模型、聚类对数秩检验和聚类置换检验(非参数)。对于考虑的每种方法,我们估计了Ⅰ型错误、功效、均方误差和治疗效果估计值的覆盖率。我们观察到聚类对数秩检验的Ⅰ型错误低估。即使违反了模型假设,边缘比例风险方法也能很好地发挥作用。只有在分布正确指定的情况下,非线性混合模型才具有优势。

相似文献

1
A comparison of statistical approaches for physician-randomized trials with survival outcomes.
Contemp Clin Trials. 2012 Jan;33(1):104-15. doi: 10.1016/j.cct.2011.08.008. Epub 2011 Sep 6.
2
An evaluation of statistical approaches for analyzing physician-randomized quality improvement interventions.
Contemp Clin Trials. 2008 Sep;29(5):687-95. doi: 10.1016/j.cct.2008.04.003. Epub 2008 Apr 23.
3
A positive stable frailty model for clustered failure time data with covariate-dependent frailty.
Biometrics. 2011 Mar;67(1):8-17. doi: 10.1111/j.1541-0420.2010.01444.x.
6
Nonproportional hazards and unobserved heterogeneity in clustered survival data: When can we tell the difference?
Stat Med. 2019 Aug 15;38(18):3405-3420. doi: 10.1002/sim.8171. Epub 2019 May 3.

引用本文的文献

1
Matching the green wave: growing season length determines embryonic diapause in roe deer.
Proc Biol Sci. 2025 May;292(2047):20242903. doi: 10.1098/rspb.2024.2903. Epub 2025 May 21.
2
A comparison of analytical strategies for cluster randomized trials with survival outcomes in the presence of competing risks.
Stat Methods Med Res. 2022 Jul;31(7):1224-1241. doi: 10.1177/09622802221085080. Epub 2022 Mar 15.
4
Methods for dealing with unequal cluster sizes in cluster randomized trials: A scoping review.
PLoS One. 2021 Jul 29;16(7):e0255389. doi: 10.1371/journal.pone.0255389. eCollection 2021.
5
Neighborhood Risk Factors for Recidivism: For Whom do they Matter?
Am J Community Psychol. 2021 Mar;67(1-2):103-115. doi: 10.1002/ajcp.12463. Epub 2020 Sep 22.

本文引用的文献

1
A SAS macro for a clustered logrank test.
Comput Methods Programs Biomed. 2011 Nov;104(2):266-70. doi: 10.1016/j.cmpb.2011.02.001. Epub 2011 Apr 15.
2
A SAS macro for a clustered permutation test.
Comput Methods Programs Biomed. 2009 Jul;95(1):89-94. doi: 10.1016/j.cmpb.2009.02.005. Epub 2009 Mar 24.
3
An evaluation of statistical approaches for analyzing physician-randomized quality improvement interventions.
Contemp Clin Trials. 2008 Sep;29(5):687-95. doi: 10.1016/j.cct.2008.04.003. Epub 2008 Apr 23.
4
The use of Gaussian quadrature for estimation in frailty proportional hazards models.
Stat Med. 2008 Jun 30;27(14):2665-83. doi: 10.1002/sim.3077.
6
Improving care of patients at-risk for osteoporosis: a randomized controlled trial.
J Gen Intern Med. 2007 Mar;22(3):362-7. doi: 10.1007/s11606-006-0099-7.
10
Modelling clustered survival data from multicentre clinical trials.
Stat Med. 2004 Feb 15;23(3):369-88. doi: 10.1002/sim.1599.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验