Orthopedics and Arthritis Center for Outcomes Research, Department of Orthopedics, Brigham and Women's Hospital, Boston, MA 02115, USA.
Contemp Clin Trials. 2012 Jan;33(1):104-15. doi: 10.1016/j.cct.2011.08.008. Epub 2011 Sep 6.
This study compares methods for analyzing correlated survival data from physician-randomized trials of health care quality improvement interventions. Several proposed methods adjust for correlated survival data; however the most suitable method is unknown. Applying the characteristics of our study example, we performed three simulation studies to compare conditional, marginal, and non-parametric methods for analyzing clustered survival data. We simulated 1000 datasets using a shared frailty model with (1) fixed cluster size, (2) variable cluster size, and (3) non-lognormal random effects. Methods of analyses included: the nonlinear mixed model (conditional), the marginal proportional hazards model with robust standard errors, the clustered logrank test, and the clustered permutation test (non-parametric). For each method considered we estimated Type I error, power, mean squared error, and the coverage probability of the treatment effect estimator. We observed underestimated Type I error for the clustered logrank test. The marginal proportional hazards method performed well even when model assumptions were violated. Nonlinear mixed models were only advantageous when the distribution was correctly specified.
本研究比较了分析医疗质量改进干预措施的医师随机试验相关生存数据的方法。有几种提出的方法可用于调整相关生存数据;然而,最合适的方法尚不清楚。应用我们研究示例的特点,我们进行了三项模拟研究,以比较分析聚类生存数据的条件、边缘和非参数方法。我们使用具有(1)固定聚类大小、(2)可变聚类大小和(3)非对数正态随机效应的共享脆弱性模型模拟了 1000 个数据集。分析方法包括:非线性混合模型(条件)、具有稳健标准误差的边缘比例风险模型、聚类对数秩检验和聚类置换检验(非参数)。对于考虑的每种方法,我们估计了Ⅰ型错误、功效、均方误差和治疗效果估计值的覆盖率。我们观察到聚类对数秩检验的Ⅰ型错误低估。即使违反了模型假设,边缘比例风险方法也能很好地发挥作用。只有在分布正确指定的情况下,非线性混合模型才具有优势。