Suppr超能文献

Bambus 2:支架宏基因组。

Bambus 2: scaffolding metagenomes.

机构信息

Department of Computer Science, University of Maryland, College Park, MD 20742, USA.

出版信息

Bioinformatics. 2011 Nov 1;27(21):2964-71. doi: 10.1093/bioinformatics/btr520. Epub 2011 Sep 16.

Abstract

MOTIVATION

Sequencing projects increasingly target samples from non-clonal sources. In particular, metagenomics has enabled scientists to begin to characterize the structure of microbial communities. The software tools developed for assembling and analyzing sequencing data for clonal organisms are, however, unable to adequately process data derived from non-clonal sources.

RESULTS

We present a new scaffolder, Bambus 2, to address some of the challenges encountered when analyzing metagenomes. Our approach relies on a combination of a novel method for detecting genomic repeats and algorithms that analyze assembly graphs to identify biologically meaningful genomic variants. We compare our software to current assemblers using simulated and real data. We demonstrate that the repeat detection algorithms have higher sensitivity than current approaches without sacrificing specificity. In metagenomic datasets, the scaffolder avoids false joins between distantly related organisms while obtaining long-range contiguity. Bambus 2 represents a first step toward automated metagenomic assembly.

AVAILABILITY

Bambus 2 is open source and available from http://amos.sf.net.

CONTACT

mpop@umiacs.umd.edu.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

测序项目越来越多地针对非克隆来源的样本。特别是,宏基因组学使科学家能够开始描述微生物群落的结构。然而,为分析克隆生物的测序数据而开发的软件工具无法充分处理来自非克隆来源的数据。

结果

我们提出了一种新的支架,Bambus 2,以解决分析宏基因组时遇到的一些挑战。我们的方法依赖于一种新颖的检测基因组重复的方法和分析组装图以识别有意义的生物基因组变体的算法。我们使用模拟和真实数据将我们的软件与当前的组装器进行比较。我们证明,重复检测算法具有更高的敏感性,而不会牺牲特异性。在宏基因组数据集中,支架避免了在远缘生物之间的错误连接,同时获得了长程连续性。Bambus 2 代表了自动化宏基因组组装的第一步。

可用性

Bambus 2 是开源的,并可从 http://amos.sf.net 获得。

联系方式

mpop@umiacs.umd.edu

补充信息

补充数据可在Bioinformatics 在线获得。

相似文献

1
Bambus 2: scaffolding metagenomes.
Bioinformatics. 2011 Nov 1;27(21):2964-71. doi: 10.1093/bioinformatics/btr520. Epub 2011 Sep 16.
2
Exploring variation-aware contig graphs for (comparative) metagenomics using MaryGold.
Bioinformatics. 2013 Nov 15;29(22):2826-34. doi: 10.1093/bioinformatics/btt502. Epub 2013 Sep 20.
3
GraphBin: refined binning of metagenomic contigs using assembly graphs.
Bioinformatics. 2020 Jun 1;36(11):3307-3313. doi: 10.1093/bioinformatics/btaa180.
5
Stitching gene fragments with a network matching algorithm improves gene assembly for metagenomics.
Bioinformatics. 2012 Sep 15;28(18):i363-i369. doi: 10.1093/bioinformatics/bts388.
6
A de novo metagenomic assembly program for shotgun DNA reads.
Bioinformatics. 2012 Jun 1;28(11):1455-62. doi: 10.1093/bioinformatics/bts162. Epub 2012 Apr 11.
7
MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets.
Bioinformatics. 2016 Feb 15;32(4):605-7. doi: 10.1093/bioinformatics/btv638. Epub 2015 Oct 29.
8
Identifying biologically relevant differences between metagenomic communities.
Bioinformatics. 2010 Mar 15;26(6):715-21. doi: 10.1093/bioinformatics/btq041. Epub 2010 Feb 3.
9
10
MetaQUAST: evaluation of metagenome assemblies.
Bioinformatics. 2016 Apr 1;32(7):1088-90. doi: 10.1093/bioinformatics/btv697. Epub 2015 Nov 26.

引用本文的文献

1
Metagenomic profiling of gut microbime: associating their role with the advancement of diabetic nephropathy.
Antonie Van Leeuwenhoek. 2025 Aug 22;118(9):135. doi: 10.1007/s10482-025-02141-5.
3
Genome Sequence of a Marine Threespine Stickleback () from Rabbit Slough in the Cook Inlet.
bioRxiv. 2025 Feb 8:2025.02.06.636934. doi: 10.1101/2025.02.06.636934.
4
Graph-based self-supervised learning for repeat detection in metagenomic assembly.
Genome Res. 2024 Oct 11;34(9):1468-1476. doi: 10.1101/gr.279136.124.
7
KOMB: K-core based de novo characterization of copy number variation in microbiomes.
Comput Struct Biotechnol J. 2022 Jun 17;20:3208-3222. doi: 10.1016/j.csbj.2022.06.019. eCollection 2022.
8
EvalDNA: a machine learning-based tool for the comprehensive evaluation of mammalian genome assembly quality.
BMC Bioinformatics. 2021 Nov 27;22(1):570. doi: 10.1186/s12859-021-04480-2.
9
SWALO: scaffolding with assembly likelihood optimization.
Nucleic Acids Res. 2021 Nov 18;49(20):e117. doi: 10.1093/nar/gkab717.
10
Binnacle: Using Scaffolds to Improve the Contiguity and Quality of Metagenomic Bins.
Front Microbiol. 2021 Feb 24;12:638561. doi: 10.3389/fmicb.2021.638561. eCollection 2021.

本文引用的文献

1
Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.
J Comput Biol. 2011 Nov;18(11):1681-91. doi: 10.1089/cmb.2011.0170. Epub 2011 Sep 19.
2
Meta-IDBA: a de Novo assembler for metagenomic data.
Bioinformatics. 2011 Jul 1;27(13):i94-101. doi: 10.1093/bioinformatics/btr216.
3
Enterotypes of the human gut microbiome.
Nature. 2011 May 12;473(7346):174-80. doi: 10.1038/nature09944. Epub 2011 Apr 20.
4
Genovo: de novo assembly for metagenomes.
J Comput Biol. 2011 Mar;18(3):429-43. doi: 10.1089/cmb.2010.0244.
5
Metagenomic discovery of biomass-degrading genes and genomes from cow rumen.
Science. 2011 Jan 28;331(6016):463-7. doi: 10.1126/science.1200387.
6
Succession of microbial consortia in the developing infant gut microbiome.
Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1(Suppl 1):4578-85. doi: 10.1073/pnas.1000081107. Epub 2010 Jul 28.
7
SOPRA: Scaffolding algorithm for paired reads via statistical optimization.
BMC Bioinformatics. 2010 Jun 24;11:345. doi: 10.1186/1471-2105-11-345.
8
A human gut microbial gene catalogue established by metagenomic sequencing.
Nature. 2010 Mar 4;464(7285):59-65. doi: 10.1038/nature08821.
9
Assembly complexity of prokaryotic genomes using short reads.
BMC Bioinformatics. 2010 Jan 12;11:21. doi: 10.1186/1471-2105-11-21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验