Garrahan Juan P, Armour Andrew D, Lesanovsky Igor
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021115. doi: 10.1103/PhysRevE.84.021115. Epub 2011 Aug 8.
We study the dynamics of the single-atom maser, or micromaser, by means of the recently introduced method of thermodynamics of quantum jump trajectories. We find that the dynamics of the micromaser displays multiple space-time phase transitions, i.e., phase transitions in ensembles of quantum jump trajectories. This rich dynamical phase structure becomes apparent when trajectories are classified by dynamical observables that quantify dynamical activity, such as the number of atoms that have changed state while traversing the cavity. The space-time transitions can be either first order or continuous, and are controlled not just by standard parameters of the micromaser but also by nonequilibrium "counting" fields. We discuss how the dynamical phase behavior relates to the better known stationary-state properties of the micromaser.
我们借助最近引入的量子跳跃轨迹热力学方法,研究单原子微波激射器(即微型微波激射器)的动力学。我们发现微型微波激射器的动力学呈现出多个时空相变,即在量子跳跃轨迹系综中的相变。当根据量化动力学活动的动力学可观测量(例如在穿过腔时改变状态的原子数)对轨迹进行分类时,这种丰富的动力学相结构就会变得明显。时空相变既可以是一阶的,也可以是连续的,并且不仅由微型微波激射器的标准参数控制,还由非平衡“计数”场控制。我们讨论了动力学相行为与微型微波激射器更为人所知的稳态特性之间的关系。