Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada.
ACS Appl Mater Interfaces. 2011 Oct;3(10):3792-5. doi: 10.1021/am201097p. Epub 2011 Sep 27.
Colloidal quantum dots (CQDs) enable multijunction solar cells using a single material programmed using the quantum size effect. Here we report the systematic engineering of 1.6 eV PbS CQD solar cells, optimal as the front cell responsible for visible-wavelength harvesting in tandem photovoltaics. We rationally optimize each of the device's collecting electrodes-the heterointerface with electron-accepting TiO(2) and the deep-work-function hole-collecting MoO(3) for ohmic contact-for maximum efficiency. We report an open-circuit voltage of 0.70 V, the highest observed in a colloidal quantum dot solar cell operating at room temperature. We report an AM1.5 solar power conversion efficiency of 3.5%, the highest observed in >1.5 eV bandgap CQD PV device.
胶体量子点 (CQDs) 可通过量子尺寸效应编程使用单一材料来实现多结太阳能电池。在此,我们报告了 1.6 eV PbS CQD 太阳能电池的系统工程,其作为串联光伏中负责可见光波长收集的前电池是最佳选择。我们合理地优化了器件的每个收集电极——与电子受体 TiO(2)的异质界面和深功函数的空穴收集 MoO(3)以实现欧姆接触——以实现最高效率。我们报告了 0.70 V 的开路电压,这是在室温下工作的胶体量子点太阳能电池中观察到的最高值。我们报告了 AM1.5 太阳能转换效率为 3.5%,这是在 >1.5 eV 带隙 CQD PV 器件中观察到的最高值。