Suppr超能文献

基于图谱配准和表观模型的自动脑结构分割。

Automated brain structure segmentation based on atlas registration and appearance models.

机构信息

Departments of Medical Informatics and Radiology, Erasmus MC, 3000 CA Rotterdam, The Netherlands.

出版信息

IEEE Trans Med Imaging. 2012 Feb;31(2):276-86. doi: 10.1109/TMI.2011.2168420. Epub 2011 Sep 19.

Abstract

Accurate automated brain structure segmentation methods facilitate the analysis of large-scale neuroimaging studies. This work describes a novel method for brain structure segmentation in magnetic resonance images that combines information about a structure's location and appearance. The spatial model is implemented by registering multiple atlas images to the target image and creating a spatial probability map. The structure's appearance is modeled by a classifier based on Gaussian scale-space features. These components are combined with a regularization term in a Bayesian framework that is globally optimized using graph cuts. The incorporation of the appearance model enables the method to segment structures with complex intensity distributions and increases its robustness against errors in the spatial model. The method is tested in cross-validation experiments on two datasets acquired with different magnetic resonance sequences, in which the hippocampus and cerebellum were segmented by an expert. Furthermore, the method is compared to two other segmentation techniques that were applied to the same data. Results show that the atlas- and appearance-based method produces accurate results with mean Dice similarity indices of 0.95 for the cerebellum, and 0.87 for the hippocampus. This was comparable to or better than the other methods, whereas the proposed technique is more widely applicable and robust.

摘要

精确的自动化脑结构分割方法有助于对大规模神经影像学研究进行分析。本工作描述了一种新的磁共振图像脑结构分割方法,它结合了结构位置和外观的信息。空间模型通过将多个图谱图像配准到目标图像并创建空间概率图来实现。结构的外观通过基于高斯尺度空间特征的分类器进行建模。这些组件与贝叶斯框架中的正则化项结合在一起,通过图割进行全局优化。外观模型的引入使该方法能够分割具有复杂强度分布的结构,并提高了其对空间模型误差的鲁棒性。该方法在两个使用不同磁共振序列采集的数据集上进行了交叉验证实验,由专家对海马体和小脑进行了分割。此外,还将该方法与应用于相同数据的另外两种分割技术进行了比较。结果表明,基于图谱和外观的方法产生了准确的结果,小脑的平均 Dice 相似性指数为 0.95,海马体为 0.87。这与其他方法相当或更好,而所提出的技术更具有广泛的适用性和更强的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验