Suppr超能文献

不断演变的生态网络与跨温度梯度生物多样性模式的出现。

Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients.

作者信息

Stegen James C, Ferriere Regis, Enquist Brian J

机构信息

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.

出版信息

Proc Biol Sci. 2012 Mar 22;279(1731):1051-60. doi: 10.1098/rspb.2011.1733. Epub 2011 Sep 21.

Abstract

In ectothermic organisms, it is hypothesized that metabolic rates mediate influences of temperature on the ecological and evolutionary processes governing biodiversity. However, it is unclear how and to what extent the influence of temperature on metabolism scales up to shape large-scale diversity patterns. In order to clarify the roles of temperature and metabolism, new theory is needed. Here, we establish such theory and model eco-evolutionary dynamics of trophic networks along a broad temperature gradient. In the model temperature can influence, via metabolism, resource supply, consumers' vital rates and mutation rate. Mutation causes heritable variation in consumer body size, which diversifies and governs consumer function in the ecological network. The model predicts diversity to increase with temperature if resource supply is temperature-dependent, whereas temperature-dependent consumer vital rates cause diversity to decrease with increasing temperature. When combining both thermal dependencies, a unimodal temperature-diversity pattern evolves, which is reinforced by temperature-dependent mutation rate. Studying coexistence criteria for two consumers showed that these outcomes are owing to temperature effects on mutual invasibility and facilitation. Our theory shows how and why metabolism can influence diversity, generates predictions useful for understanding biodiversity gradients and represents an extendable framework that could include factors such as colonization history and niche conservatism.

摘要

在变温生物中,有假说认为代谢率介导了温度对控制生物多样性的生态和进化过程的影响。然而,目前尚不清楚温度对代谢的影响如何以及在何种程度上扩大以形成大规模的多样性模式。为了阐明温度和代谢的作用,需要新的理论。在此,我们建立了这样的理论,并对沿广泛温度梯度的营养网络的生态进化动态进行建模。在该模型中,温度可通过代谢影响资源供应、消费者的生命率和突变率。突变导致消费者体型的可遗传变异,这使生态网络中的消费者功能多样化并对其进行调控。该模型预测,如果资源供应依赖于温度,多样性会随温度升高而增加,而依赖于温度的消费者生命率则导致多样性随温度升高而降低。当结合这两种热依赖性时,会形成单峰温度 - 多样性模式,而依赖于温度的突变率会强化这种模式。对两种消费者共存标准的研究表明,这些结果是由于温度对相互入侵性和促进作用的影响。我们的理论展示了代谢如何以及为何能够影响多样性,产生了有助于理解生物多样性梯度的预测,并代表了一个可扩展的框架,该框架可以纳入诸如定殖历史和生态位保守性等因素。

相似文献

1
Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients.
Proc Biol Sci. 2012 Mar 22;279(1731):1051-60. doi: 10.1098/rspb.2011.1733. Epub 2011 Sep 21.
3
Advancing the metabolic theory of biodiversity.
Ecol Lett. 2009 Oct;12(10):1001-15. doi: 10.1111/j.1461-0248.2009.01358.x.
4
Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy.
J Anim Ecol. 2014 Jan;83(1):70-84. doi: 10.1111/1365-2656.12081. Epub 2013 May 21.
5
Eco-evolutionary consequences of habitat warming and fragmentation in communities.
Biol Rev Camb Philos Soc. 2021 Oct;96(5):1933-1950. doi: 10.1111/brv.12732. Epub 2021 May 16.
6
Simulated tri-trophic networks reveal complex relationships between species diversity and interaction diversity.
PLoS One. 2018 Mar 26;13(3):e0193822. doi: 10.1371/journal.pone.0193822. eCollection 2018.
7
Metabolic ecology.
J Anim Ecol. 2014 Jan;83(1):7-19. doi: 10.1111/1365-2656.12124. Epub 2013 Sep 12.
8
Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment.
PLoS Biol. 2012;10(3):e1001292. doi: 10.1371/journal.pbio.1001292. Epub 2012 Mar 27.
9
Unifying ecological stoichiometry and metabolic theory to predict production and trophic transfer in a marine planktonic food web.
Philos Trans R Soc Lond B Biol Sci. 2016 May 19;371(1694). doi: 10.1098/rstb.2015.0270.

引用本文的文献

1
Study becomes insight: Ecological learning from machine learning.
Methods Ecol Evol. 2021 Nov;12(11):2117-2128. doi: 10.1111/2041-210X.13686. Epub 2021 Aug 6.
2
Global patterns and climatic drivers of above- and belowground net primary productivity in grasslands.
Sci China Life Sci. 2021 May;64(5):739-751. doi: 10.1007/s11427-020-1837-9. Epub 2020 Nov 17.
3
Does evolution design robust food webs?
Proc Biol Sci. 2020 Jul 8;287(1930):20200747. doi: 10.1098/rspb.2020.0747. Epub 2020 Jul 1.
4
At the Nexus of History, Ecology, and Hydrobiogeochemistry: Improved Predictions across Scales through Integration.
mSystems. 2018 Apr 10;3(2). doi: 10.1128/mSystems.00167-17. eCollection 2018 Mar-Apr.
5
Revealing the hidden structure of dynamic ecological networks.
R Soc Open Sci. 2017 Jun 7;4(6):170251. doi: 10.1098/rsos.170251. eCollection 2017 Jun.
7
Temperature mediates continental-scale diversity of microbes in forest soils.
Nat Commun. 2016 Jul 5;7:12083. doi: 10.1038/ncomms12083.
8
From phenotype to genotype in complex brain networks.
Sci Rep. 2016 Jan 22;6:19790. doi: 10.1038/srep19790.

本文引用的文献

1
Global patterns and predictors of marine biodiversity across taxa.
Nature. 2010 Aug 26;466(7310):1098-101. doi: 10.1038/nature09329. Epub 2010 Jul 28.
2
Metabolic theory and elevational diversity of vertebrate ectotherms.
Ecology. 2010 Feb;91(2):601-9. doi: 10.1890/09-0704.1.
4
Advancing the metabolic theory of biodiversity.
Ecol Lett. 2009 Oct;12(10):1001-15. doi: 10.1111/j.1461-0248.2009.01358.x.
6
Niche evolution, trophic structure, and species turnover in model food webs.
Am Nat. 2009 Jul;174(1):56-67. doi: 10.1086/599301.
7
Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities.
Nature. 2008 Mar 13;452(7184):210-4. doi: 10.1038/nature06554.
8
Effects of metabolic rate on protein evolution.
Biol Lett. 2007 Dec 22;3(6):655-9. doi: 10.1098/rsbl.2007.0403.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验