Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria and Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
J Neurosci. 2011 Sep 21;31(38):13682-94. doi: 10.1523/JNEUROSCI.2300-11.2011.
In neurons L-type calcium currents function in gene regulation and synaptic plasticity, while excessive calcium influx leads to excitotoxicity and neurodegeneration. The major neuronal Ca(V)1.2 L-type channels are localized in clusters in dendritic shafts and spines. Whereas Ca(V)1.2 clusters remain stable during NMDA-induced synaptic depression, L-type calcium currents are rapidly downregulated during strong excitatory stimulation. Here we used fluorescence recovery after photobleaching (FRAP), live cell-labeling protocols, and single particle tracking (SPT) to analyze the turnover and surface traffic of Ca(V)1.2 in dendrites of mature cultured mouse and rat hippocampal neurons, respectively. FRAP analysis of channels extracellularly tagged with superecliptic pHluorin (Ca(V)1.2-SEP) demonstrated ∼20% recovery within 2 min without reappearance of clusters. Pulse-chase labeling showed that membrane-expressed Ca(V)1.2-HA is not internalized within1 h, while blocking dynamin-dependent endocytosis resulted in increased cluster density after 30 min. Together, these results suggest a turnover rate of clustered Ca(V)1.2s on the hour time scale. Direct recording of the lateral movement in the membrane using SPT demonstrated that dendritic Ca(V)1.2s show highly confined mobility with diffusion coefficients of ∼0.005 μm² s⁻¹. Consistent with the mobile Ca(V)1.2 fraction observed in FRAP, a ∼30% subpopulation of channels reversibly exchanged between confined and diffusive states. Remarkably, high potassium depolarization did not alter the recovery rates in FRAP or the diffusion coefficients in SPT analyses. Thus, an equilibrium of clustered and dynamic Ca(V)1.2s maintains stable calcium channel complexes involved in activity-dependent cell signaling, whereas the minor mobile channel pool in mature neurons allows limited capacity for short-term adaptations.
在神经元中,L 型钙电流在基因调控和突触可塑性中起作用,而过量的钙内流会导致兴奋性毒性和神经退行性变。主要的神经元 Ca(V)1.2 L 型通道位于树突干和棘突的簇中。虽然 Ca(V)1.2 簇在 NMDA 诱导的突触抑制期间保持稳定,但在强烈的兴奋性刺激下,L 型钙电流会迅速下调。在这里,我们分别使用荧光恢复后漂白(FRAP)、活细胞标记协议和单颗粒跟踪(SPT)来分析成熟培养的小鼠和大鼠海马神经元树突中 Ca(V)1.2 的周转和表面运输。用超发光 pHluorin(Ca(V)1.2-SEP)标记的通道的 FRAP 分析表明,在没有簇再出现的情况下,2 分钟内恢复了约 20%。脉冲-追踪标记表明,膜表达的 Ca(V)1.2-HA 在 1 小时内不会内化,而阻断依赖于 dynamin 的内吞作用会导致 30 分钟后簇密度增加。总的来说,这些结果表明簇状 Ca(V)1.2 的周转率为每小时。使用 SPT 直接记录膜中的侧向运动表明,树突 Ca(V)1.2 表现出高度受限的流动性,扩散系数约为 0.005 μm² s⁻¹。与 FRAP 中观察到的可移动 Ca(V)1.2 部分一致,约 30%的通道亚群在受限和扩散状态之间可逆交换。值得注意的是,高钾去极化不会改变 FRAP 中的恢复率或 SPT 分析中的扩散系数。因此,簇状和动态 Ca(V)1.2 的平衡维持着与活动依赖性细胞信号转导相关的稳定钙通道复合物,而成熟神经元中的少量可移动通道池允许进行有限的短期适应。