School of Computing, Queen’s University, 25 Union Street, Goodwin Hall, Kingston, Ontario K7L 3N6, Canada.
BMC Bioinformatics. 2011 Sep 26;12:380. doi: 10.1186/1471-2105-12-380.
The speed at which biological datasets are being accumulated stands in contrast to our ability to integrate them meaningfully. Large-scale biological databases containing datasets of genes, proteins, cells, organs, and diseases are being created but they are not connected. Integration of these vast but heterogeneous sources of information will allow the systematic and comprehensive analysis of molecular and clinical datasets, spanning hundreds of dimensions and thousands of individuals. This integration is essential to capitalize on the value of current and future molecular- and cellular-level data on humans to gain novel insights about health and disease.
We describe a new open-source Cytoscape plugin named iCTNet (integrated Complex Traits Networks). iCTNet integrates several data sources to allow automated and systematic creation of networks with up to five layers of omics information: phenotype-SNP association, protein-protein interaction, disease-tissue, tissue-gene, and drug-gene relationships. It facilitates the generation of general or specific network views with diverse options for more than 200 diseases. Built-in tools are provided to prioritize candidate genes and create modules of specific phenotypes.
iCTNet provides a user-friendly interface to search, integrate, visualize, and analyze genome-scale biological networks for human complex traits. We argue this tool is a key instrument that facilitates systematic integration of disparate large-scale data through network visualization, ultimately allowing the identification of disease similarities and the design of novel therapeutic approaches.The online database and Cytoscape plugin are freely available for academic use at: http://www.cs.queensu.ca/ictnet.
生物数据集的积累速度与我们对其进行有意义整合的能力形成鲜明对比。大型生物数据库包含基因、蛋白质、细胞、器官和疾病数据集,但它们之间没有联系。整合这些庞大而异构的信息来源将允许对分子和临床数据集进行系统和全面的分析,涵盖数百个维度和数千个个体。这种整合对于利用当前和未来人类分子和细胞层面的数据的价值至关重要,以获得关于健康和疾病的新见解。
我们描述了一个名为 iCTNet(综合复杂性状网络)的新的开源 Cytoscape 插件。iCTNet 整合了多个数据源,允许自动和系统地创建最多具有五层组学信息的网络:表型-SNP 关联、蛋白质-蛋白质相互作用、疾病-组织、组织-基因和药物-基因关系。它为 200 多种疾病提供了生成通用或特定网络视图的多样化选项。内置工具用于优先考虑候选基因并创建特定表型的模块。
iCTNet 提供了一个用户友好的界面,用于搜索、整合、可视化和分析人类复杂性状的基因组规模的生物网络。我们认为,该工具是一种关键的工具,通过网络可视化促进了不同大规模数据的系统整合,最终允许识别疾病的相似性并设计新的治疗方法。在线数据库和 Cytoscape 插件可供学术使用,网址为:http://www.cs.queensu.ca/ictnet。