Suppr超能文献

流行病学建模原理

Principles of epidemiological modelling.

作者信息

Garner M G, Hamilton S A

机构信息

Office of the Chief Veterinary Officer, Biosecurity Services Group, Australian Government Department of Agriculture, Fisheries and Forestry, G.P.O. Box 858 Canberra, ACT, 2601, Australia.

出版信息

Rev Sci Tech. 2011 Aug;30(2):407-16. doi: 10.20506/rst.30.2.2045.

Abstract

Epidemiological modelling can be a powerful tool to assist animal health policy development and disease prevention and control. Models can vary from simple deterministic mathematical models through to complex spatially-explicit stochastic simulations and decision support systems. The approach used will vary depending on the purpose of the study, how well the epidemiology of a disease is understood, the amount and quality of data available, and the background and experience of the modellers. Epidemiological models can be classified into various categories depending on their treatment of variability, chance and uncertainty (deterministic or stochastic), time (continuous or discrete intervals), space (non-spatial or spatial) and the structure of the population (homogenous or heterogeneous mixing). The increasing sophistication of computers, together with greater recognition of the importance of spatial elements in the spread and control of disease, mean that models which incorporate spatial components are becoming more important in epidemiological studies. Multidisciplinary approaches using a range of new technologies make it possible to build more sophisticated models of animal disease. New generation epidemiological models enable disease to be studied in the context of physical, economic, technological, health, media and political infrastructures. To be useful in policy development, models must be fit for purpose and appropriately verified and validated. This involves ensuring that the model is an adequate representation of the system under study and that its outputs are sufficiently accurate and precise for the intended purpose. Finally, models are just one tool for providing technical advice, and should not be considered in isolation from data from experimental and field studies.

摘要

流行病学建模可以成为协助制定动物卫生政策以及疾病预防和控制的有力工具。模型的形式多种多样,从简单的确定性数学模型到复杂的空间明确随机模拟以及决策支持系统。所采用的方法将因研究目的、对疾病流行病学的了解程度、可用数据的数量和质量以及建模人员的背景和经验而有所不同。根据对变异性、偶然性和不确定性(确定性或随机性)、时间(连续或离散区间)、空间(非空间或空间)以及种群结构(同质或异质混合)的处理方式,流行病学模型可分为不同类别。计算机日益复杂,加上人们更加认识到空间因素在疾病传播和控制中的重要性,这意味着纳入空间成分的模型在流行病学研究中变得越来越重要。利用一系列新技术的多学科方法使得构建更复杂的动物疾病模型成为可能。新一代流行病学模型能够在物理、经济、技术、健康、媒体和政治基础设施的背景下研究疾病。为了在政策制定中发挥作用,模型必须符合目的,并经过适当的验证和确认。这包括确保模型能够充分代表所研究的系统,并且其输出对于预期目的而言足够准确和精确。最后,模型只是提供技术建议的一种工具,不应脱离实验和实地研究的数据单独考虑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验