Oong Tatt Hee, Isa Nor Ashidi Mat
Imaging and Intelligent Systems Research Team, School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia.
IEEE Trans Neural Netw. 2011 Nov;22(11):1823-36. doi: 10.1109/TNN.2011.2169426. Epub 2011 Oct 3.
This paper presents a new evolutionary approach called the hybrid evolutionary artificial neural network (HEANN) for simultaneously evolving an artificial neural networks (ANNs) topology and weights. Evolutionary algorithms (EAs) with strong global search capabilities are likely to provide the most promising region. However, they are less efficient in fine-tuning the search space locally. HEANN emphasizes the balancing of the global search and local search for the evolutionary process by adapting the mutation probability and the step size of the weight perturbation. This is distinguishable from most previous studies that incorporate EA to search for network topology and gradient learning for weight updating. Four benchmark functions were used to test the evolutionary framework of HEANN. In addition, HEANN was tested on seven classification benchmark problems from the UCI machine learning repository. Experimental results show the superior performance of HEANN in fine-tuning the network complexity within a small number of generations while preserving the generalization capability compared with other algorithms.
本文提出了一种名为混合进化人工神经网络(HEANN)的新进化方法,用于同时进化人工神经网络(ANN)的拓扑结构和权重。具有强大全局搜索能力的进化算法(EA)可能会提供最有希望的区域。然而,它们在局部微调搜索空间方面效率较低。HEANN通过调整变异概率和权重扰动的步长,强调在进化过程中全局搜索和局部搜索的平衡。这与大多数先前的研究不同,那些研究采用EA来搜索网络拓扑结构,并使用梯度学习来更新权重。使用四个基准函数来测试HEANN的进化框架。此外,还在UCI机器学习库中的七个分类基准问题上对HEANN进行了测试。实验结果表明,与其他算法相比,HEANN在少数几代内微调网络复杂度的同时保持泛化能力方面具有卓越的性能。