Xiao Yongling, Abrahamowicz Michal, Moodie Erica E M
McGill University, Canada.
Int J Biostat. 2010;6(2):Article 13. doi: 10.2202/1557-4679.1208.
Marginal structural models (MSM) provide a powerful tool to control for confounding by a time-dependent covariate without inappropriately adjusting for its role as a variable affected by treatment (Hernán et al., 2000). In this paper, we demonstrate that it is possible to fit a marginal structural Cox model directly, rather than the typical approach of using pooled logistic regression, using the weighted Cox proportional hazards function that has been implemented in standard software. To evaluate the performance of the marginal structural Cox model directly via inverse probability of treatment weighting, we conducted several simulation studies based on two data-generating models: one which replicates the simulations of Young et al. (2009) and an additional, more clinically plausible approach which mimics survival data with time-dependent confounders and time-varying treatment. Using the simulations, we illustrate the limitations of the conventional time-dependent Cox model and the MSM fitted via pooled logistic regression. Furthermore, we propose two novel normalized weights with the goal of reducing the MSM estimators' variability. The performance of the normalized weights is evaluated alongside the usual unstabilized and stabilized weights.
边际结构模型(MSM)提供了一个强大的工具,可用于控制随时间变化的协变量所导致的混杂,而不会不适当地调整其作为受治疗影响的变量所起的作用(埃尔南等人,2000年)。在本文中,我们证明了可以直接拟合边际结构Cox模型,而不是使用合并逻辑回归的典型方法,通过使用标准软件中已实现的加权Cox比例风险函数来实现。为了通过治疗权重的逆概率直接评估边际结构Cox模型的性能,我们基于两个数据生成模型进行了多项模拟研究:一个复制了杨等人(2009年)的模拟,另一个更具临床合理性的方法,它模拟了具有随时间变化的混杂因素和随时间变化的治疗的生存数据。通过这些模拟,我们阐述了传统的随时间变化的Cox模型以及通过合并逻辑回归拟合的MSM的局限性。此外,我们提出了两种新颖的标准化权重,目的是降低MSM估计量的变异性。同时评估了标准化权重与通常的未稳定权重和稳定权重的性能。