Suppr超能文献

体素束伪影评估的分解方法。

Cone-beam artifact evaluation of the factorization method.

机构信息

Siemens AG, Healthcare Sector, Siemensstrasse 1, D-91301 Forchheim, Germany.

出版信息

Med Phys. 2011 Jul;38 Suppl 1(Suppl 1):S18. doi: 10.1118/1.3577743.

Abstract

PURPOSE

The authors investigate the CB artifact behavior of the factorization approach recently suggested for image reconstruction in circular cone-beam computed tomography. This investigation is carried out in a typical C-arm geometry and involves simulated data and for the first time also phantom and clinical CB data acquired with a commercially available angiographic system.

METHODS

The CB artifact level is first measured using quantitative figures-of-merit that are computed from the reconstructions of the mathematical FORBILD head phantom and of a modified disk phantom. The authors then show reconstructions from a physical thorax phantom and clinical head data sets for a visual assessment of image quality. The performance of the factorization method is primarily compared to that of short-scan FDK, but the authors also show the results obtained with the full-scan FDK and the virtual PI-line BPF method for the simulation studies, as a benchmark.

RESULTS

Quantitatively, the FORBILD head phantom reconstructions of both FDK methods show a spatially averaged bias of up to 1.2% in the axial slices about 9 cm away from the plane of the scan, which is placed 4 cm below the central slice through the phantom. The artifact level for the short-scan FDK method and the virtual PI-line BPF method noticeably depends on the scan orientation. The factorization approach can significantly reduce both, this dependency as well as the reconstruction bias. It also shows visually an improved quality of the clinical images compared to short-scan FDK, particularly close to the spine and in the subcranial regions of the clinical data sets.

CONCLUSIONS

The factorization approach comes with noticeably lower reconstruction bias than the FDK methods and is least sensitive to the scan orientation among all considered short-scan methods. The data inconsistencies contained in the real data sets, such as scatter, beam hardening, or data truncation, show only little impact on the factorization results. Hence, in both, reconstructions from real and simulated data, the factorization method yields better image quality than short-scan FDK, albeit at the cost of some slight, directed high-frequency artifacts that are mostly visible in axial slices.

摘要

目的

作者研究了最近提出的用于环形锥束计算机断层摄影图像重建的因子分解方法的 CB 伪影行为。这项研究是在典型的 C 臂几何形状中进行的,涉及模拟数据,并且首次还涉及使用商业可用的血管造影系统获得的幻影和临床 CB 数据。

方法

首先使用从数学 FORBILD 头部幻影和修改后的磁盘幻影的重建中计算得出的定量性能指标来测量 CB 伪影水平。然后,作者展示了来自物理胸部幻影和临床头部数据集的重建,以进行图像质量的视觉评估。因子分解方法的性能主要与短扫描 FDK 进行比较,但作者还展示了模拟研究中使用全扫描 FDK 和虚拟 PI 线 BPF 方法获得的结果,作为基准。

结果

定量地,两种 FDK 方法的 FORBILD 头部幻影重建在距扫描平面约 9 厘米的轴向切片中显示出高达 1.2%的空间平均偏差,该平面位于幻影穿过的中央切片下方 4 厘米处。短扫描 FDK 方法和虚拟 PI 线 BPF 方法的伪影水平明显取决于扫描方向。因子分解方法可以显著降低这两种依赖性以及重建偏差。与短扫描 FDK 相比,它还在视觉上显示出改善的临床图像质量,特别是在靠近脊柱和临床数据集的颅底区域。

结论

与 FDK 方法相比,因子分解方法的重建偏差明显更低,并且在所有考虑的短扫描方法中对扫描方向的敏感性最低。真实数据集包含的数据不一致性,例如散射、束硬化或数据截断,对因子分解结果的影响很小。因此,在真实和模拟数据的重建中,因子分解方法都比短扫描 FDK 产生更好的图像质量,尽管代价是一些轻微的、定向的高频伪影,这些伪影主要在轴向切片中可见。

相似文献

1
Cone-beam artifact evaluation of the factorization method.
Med Phys. 2011 Jul;38 Suppl 1(Suppl 1):S18. doi: 10.1118/1.3577743.
2
Axial Cone-Beam Reconstruction by Weighted BPF/DBPF and Orthogonal Butterfly Filtering.
IEEE Trans Biomed Eng. 2016 Sep;63(9):1895-1903. doi: 10.1109/TBME.2015.2504484. Epub 2015 Dec 3.
4
A factorization approach for cone-beam reconstruction on a circular short-scan.
IEEE Trans Med Imaging. 2008;27(7):887-96. doi: 10.1109/TMI.2008.922705.
6
A curve-filtered FDK (C-FDK) reconstruction algorithm for circular cone-beam CT.
J Xray Sci Technol. 2011;19(3):355-71. doi: 10.3233/XST-2011-0299.
8
Cone-beam imaging with tilted rotation axis: Method and performance evaluation.
Med Phys. 2020 Aug;47(8):3305-3320. doi: 10.1002/mp.14209. Epub 2020 May 22.
9
Artifact reduction in short-scan CBCT by use of optimization-based reconstruction.
Phys Med Biol. 2016 May 7;61(9):3387-406. doi: 10.1088/0031-9155/61/9/3387. Epub 2016 Apr 5.
10
Iterative volume of interest based 4D cone-beam CT.
Med Phys. 2017 Dec;44(12):6515-6528. doi: 10.1002/mp.12575. Epub 2017 Oct 23.

引用本文的文献

1
Simulation tools for two-dimensional experiments in x-ray computed tomography using the FORBILD head phantom.
Phys Med Biol. 2012 Jul 7;57(13):N237-52. doi: 10.1088/0031-9155/57/13/N237. Epub 2012 Jun 20.

本文引用的文献

1
A factorization approach for cone-beam reconstruction on a circular short-scan.
IEEE Trans Med Imaging. 2008;27(7):887-96. doi: 10.1109/TMI.2008.922705.
2
Region of interest reconstruction from truncated data in circular cone-beam CT.
IEEE Trans Med Imaging. 2006 Jul;25(7):869-81. doi: 10.1109/tmi.2006.872329.
3
Feldkamp-type VOI reconstruction from super-short-scan cone-beam data.
Med Phys. 2004 Jun;31(6):1357-62. doi: 10.1118/1.1739298.
4
A method for including redundant data in computed tomography.
Med Phys. 2000 Apr;27(4):773-4. doi: 10.1118/1.598939.
5
3D cone-beam CT reconstruction for circular trajectories.
Phys Med Biol. 2000 Feb;45(2):329-47. doi: 10.1088/0031-9155/45/2/306.
6
Half-scan cone-beam x-ray microtomography formula.
Scanning. 1994 Jul-Aug;16(4):216-20. doi: 10.1002/sca.4950160406.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验