Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2073, United States.
DNA Repair (Amst). 2011 Nov 10;10(11):1086-94. doi: 10.1016/j.dnarep.2011.07.007. Epub 2011 Oct 5.
In the early steps of homologous recombination, single-stranded DNA (ssDNA) from a broken chromosome invades homologous sequence located in a sister or homolog donor. In genomes that contain numerous repetitive DNA elements or gene paralogs, recombination can potentially occur between non-allelic/divergent (homeologous) sequences that share sequence identity. Such recombination events can lead to lethal chromosomal deletions or rearrangements. However, homeologous recombination events can be suppressed through rejection mechanisms that involve recognition of DNA mismatches in heteroduplex DNA by mismatch repair factors, followed by active unwinding of the heteroduplex DNA by helicases. Because factors required for heteroduplex rejection are hypothesized to be targets and/or effectors of the DNA damage response (DDR), a cell cycle control mechanism that ensures timely and efficient repair, we tested whether the DDR, and more specifically, the RAD9 gene, had a role in regulating rejection. We performed these studies using a DNA repair assay that measures repair by single-strand annealing (SSA) of a double-strand break (DSB) using homeologous DNA templates. We found that repair of homeologous DNA sequences, but not identical sequences, induced a RAD9-dependent cell cycle delay in the G2 stage of the cell cycle. Repair through a divergent DNA template occurred more frequently in RAD9 compared to rad9Δ strains. However, repair in rad9Δ mutants could be restored to wild-type levels if a G2 delay was induced by nocodazole. These results suggest that cell cycle arrest induced by the Rad9-dependent DDR allows repair between divergent DNA sequences despite the potential for creating deleterious genome rearrangements, and illustrates the importance of additional cellular mechanisms that act to suppress recombination between divergent DNA sequences.
在同源重组的早期步骤中,来自断裂染色体的单链 DNA(ssDNA)侵入位于同源姐妹或同源供体中的同源序列。在含有大量重复 DNA 元件或基因旁系同源物的基因组中,重组可能发生在具有序列同一性的非等位基因/分歧(同源)序列之间。这种重组事件可能导致致命的染色体缺失或重排。然而,通过涉及错配修复因子识别异源双链 DNA 中的 DNA 错配的排斥机制,以及随后由解旋酶主动解开异源双链 DNA,可以抑制同源重组事件。由于假设异源双链体排斥所需的因子是 DNA 损伤反应(DDR)的靶标和/或效应物,即确保及时有效的修复的细胞周期控制机制,因此我们测试了 DDR,更具体地说,RAD9 基因,是否在调节排斥中发挥作用。我们使用一种 DNA 修复测定来进行这些研究,该测定通过使用同源 DNA 模板测量双链断裂(DSB)的单链退火(SSA)修复来衡量修复。我们发现,同源 DNA 序列的修复,而不是相同序列的修复,会导致细胞周期在 G2 期延迟,从而导致 RAD9 依赖性细胞周期延迟。与 rad9Δ 菌株相比,在 RAD9 中,通过发散 DNA 模板进行的修复更为频繁。然而,如果用诺考达唑诱导 G2 延迟,则 rad9Δ 突变体中的修复可以恢复到野生型水平。这些结果表明,由 Rad9 依赖性 DDR 诱导的细胞周期停滞允许在发散 DNA 序列之间进行修复,尽管存在产生有害基因组重排的潜力,并说明了抑制发散 DNA 序列之间重组的其他细胞机制的重要性。