Suppr超能文献

全电化学法制备铂修饰的纳米多孔金薄膜催化剂。

All electrochemical fabrication of a platinized nanoporous Au thin-film catalyst.

机构信息

Department of Chemistry, SUNY at Binghamton, P.O. Box 6000, Binghamton, New York 13902-6000, USA.

出版信息

ACS Appl Mater Interfaces. 2011 Nov;3(11):4459-68. doi: 10.1021/am2011433. Epub 2011 Oct 25.

Abstract

In an effort to decrease the high cost associated with the design, testing, and production of electrocatalysts, a completely electrochemical scheme has been developed to deposit and platinize a nanoporous Au (NPG) based catalyst for formic acid oxidation. The proposed route enables synthesis of an alternative to the most established, nanoparticles based catalysts and addresses issues of the latter associated with either contamination inherent from the synthetic route or poor adhesion to the supporting electrode. The synthetic protocol includes as a first step, electrochemical codeposition of a Au((1-x))Ag(x) alloy in a thiosulfate based electrolyte followed by selective electrochemical dissolution (dealloying) of Ag as the less noble metal, that generates an ultrathin and preferably continuous porous structure featuring thickness of less than 20 nm. NPG is then functionalized with Pt (no thicker than 1 nm) by surface limited redox replacement (SLRR) of underpotentially deposited Pb layer to form Pt-NPG. SLRR ensures complete coverage of the surface with Pt, believed to spread evenly over the NPG matrix. Testing of the catalyst at a proof-of-concept level demonstrates its high catalytic activity toward formic acid oxidation. Current densities of 40-50 mA cm(-2) and mass activities of 1-3 A.mg(-1) (of combined Pt-Au catalyst) have been observed and the Pt-NPG thin films have lasted over 2600 cycles in standard formic acid oxidation testing.

摘要

为了降低与电催化剂的设计、测试和生产相关的高昂成本,人们开发了一种完全电化学方案,用于沉积和镀铂基于纳米多孔金(NPG)的甲酸氧化催化剂。所提出的路线能够合成替代最成熟的基于纳米粒子的催化剂,并解决后者与合成路线固有的污染或与支撑电极的附着力差相关的问题。该合成方案包括第一步,在硫代硫酸盐电解质中电化学共沉积 Au((1-x))Ag(x)合金,然后作为较不活泼的金属选择性电化学溶解(脱合金)Ag,从而生成超薄且优选连续的多孔结构,厚度小于 20nm。然后通过欠电位沉积 Pb 层的表面限制氧化还原置换(SLRR)将 NPG 功能化,形成 Pt-NPG。SLRR 确保 Pt 完全覆盖表面,据信 Pt 均匀分布在 NPG 基质上。在概念验证水平上对催化剂进行测试表明,其对甲酸氧化具有高催化活性。已经观察到 40-50 mA cm(-2) 的电流密度和 1-3 A.mg(-1) 的质量活性(针对组合的 Pt-Au 催化剂),并且 Pt-NPG 薄膜在标准甲酸氧化测试中已经持续了 2600 多个循环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验