Department of Chemistry and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
ACS Nano. 2011 Nov 22;5(11):8852-60. doi: 10.1021/nn203009v. Epub 2011 Oct 12.
The availability of high-quality colloidal nanosheets underpins a diverse range of applications and investigations into dimension-dependent physical properties. To facilitate this, synthetic methods that yield single-crystal colloidal nanosheets with regular shapes, uniform lateral dimensions, and tunable thicknesses are critically important. Most strategies that yield colloidal nanosheets achieve some, but not all, of these morphological characteristics. Here, we describe a synthetic pathway that generates colloidal nanosheets of SnSe with uniform lateral dimensions and tunable thicknesses. SnSe represents an excellent prototype system for studying the formation of colloidal nanosheets because of its layered crystal structure and the growing interest in its potential application as an absorption layer in low-cost photovoltaic devices. Freestanding colloidal SnSe nanosheets were synthesized by slowly heating a one-pot reaction mixture of SnCl(2), oleylamine, trioctylphosphine selenide (TOP-Se), and hexamethyldisilazane (HMDS) to 240 °C. The SnSe nanostructures adopt a uniform square-like morphology with lateral dimensions of approximately 500 nm × 500 nm, and the average nanosheet thicknesses can be tuned from approximately 10 to 40 nm by adjusting the concentrations of the SnCl(2) and TOP-Se reagents. Aliquot studies reveal fundamental insights into how the nanosheets form: they first "grow out" laterally via coalescence of individual nanoparticle building blocks to yield a single-crystal nanosheet template and then "grow up" vertically (through nanoparticle attachment to the nanosheet template) in a pseudo layer-by-layer fashion. Vertical growth is therefore limited, and can be controlled, by reagent concentration. Drop-cast films of the SnSe nanosheets are photoactive and have a bandgap of approximately 1 eV. These studies, demonstrated for SnSe but potentially applicable to other systems, establish a straightforward pathway for tuning the thicknesses of colloidal nanosheets while maintaining lateral uniformity.
高质量胶体纳米片的可用性为各种应用和对尺寸相关物理性质的研究提供了基础。为了实现这一目标,具有规则形状、均匀横向尺寸和可调厚度的单晶胶体纳米片的合成方法至关重要。大多数生成胶体纳米片的策略都实现了其中的一些,但不是全部这些形态特征。在这里,我们描述了一种合成 SnSe 胶体纳米片的方法,该方法可获得具有均匀横向尺寸和可调厚度的胶体纳米片。SnSe 因其层状晶体结构以及在低成本光伏器件中作为吸收层的潜在应用而受到越来越多的关注,因此是研究胶体纳米片形成的理想原型系统。通过将 SnCl(2)、油胺、三辛基膦硒 (TOP-Se) 和六甲基二硅氮烷 (HMDS) 的一锅反应混合物缓慢加热至 240°C,可合成出独立的胶体 SnSe 纳米片。SnSe 纳米结构采用具有约 500nm×500nm 横向尺寸的均匀方形形态,通过调整 SnCl(2)和 TOP-Se 试剂的浓度,可以将平均纳米片厚度从约 10nm 调至 40nm。等分研究揭示了纳米片形成的基本原理:它们首先通过单个纳米颗粒构建块的聚合并生成长宽比为 1 的单晶纳米片模板,然后以伪逐层方式垂直“向上生长”(通过纳米颗粒附着在纳米片模板上)。因此,垂直生长受到试剂浓度的限制并可以控制。SnSe 纳米片的滴cast 薄膜具有光活性,带隙约为 1eV。这些研究虽然针对 SnSe 进行了演示,但可能适用于其他系统,为在保持横向均匀性的同时调整胶体纳米片的厚度建立了一种简单的途径。