Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, Valladolid 47071, Spain.
J Chem Phys. 2011 Oct 7;135(13):134305. doi: 10.1063/1.3645105.
We locate the putative global minimum structures of Na(x)Cs(55-x) and Li(x)Cs(55-x) nanoalloys through combined empirical potential and density functional theory calculations, and compare them to the structures of 55-atom Li-Na and Na-K nanoalloys obtained in a recent paper [A. Aguado and J. M. López, J. Chem. Phys. 133, 094302 (2010)]. Alkali nanoalloys are representative of isovalent metallic mixtures with a strong tendency towards core-shell segregation, and span a wide range of size mismatches. By comparing the four systems, we analyse how the size mismatch and composition affect the structures and relative stabilities of these mixtures, and identify useful generic trends. The Na-K system is found to possess a nearly optimal size mismatch for the formation of poly-icosahedral (pIh) structures with little strain. In systems with a larger size mismatch (Na-Cs and Li-Cs), frustration of the pIh packing induces for some compositions a reconstruction of the core, which adopts instead a decahedral packing. When the size mismatch is smaller than optimal (Li-Na), frustration leads to a partial amorphization of the structures. The excess energies are negative for all systems except for a few compositions, demonstrating that the four mixtures are reactive. Moreover, we find that Li-Cs and Li-Na mixtures are more reactive (i.e., they have more negative excess energies) than Na-K and Na-Cs mixtures, so the stability trends when comparing the different materials are exactly opposite to the trends observed in the bulk limit: the strongly non-reactive Li-alkali bulk mixtures become the most reactive ones at the nanoscale. For each material, we identify the magic composition x(m) which minimizes the excess energy. x(m) is found to increase with the size mismatch due to steric crowding effects, and for Li(x)Cs(55-x) the most stable cluster has almost equiatomic composition. We advance a simple geometric packing rule that suffices to systematize all the observed trends in systems with large size mismatch (Na-K, Na-Cs, and Li-Cs). As the size mismatch is reduced, however, electron shell effects become more and more important and contribute significantly to the stability of the Li-Na system.
我们通过组合经验势和密度泛函理论计算定位了 Na(x)Cs(55-x) 和 Li(x)Cs(55-x) 纳米合金的假定全局最小结构,并将它们与最近一篇论文 [A. Aguado 和 J. M. López,J. Chem. Phys. 133, 094302 (2010)] 中获得的 55 原子 Li-Na 和 Na-K 纳米合金的结构进行了比较。碱金属纳米合金是具有强烈核壳分离趋势的同价金属混合物的代表,并且跨越了广泛的尺寸不匹配范围。通过比较这四个系统,我们分析了尺寸不匹配和组成如何影响这些混合物的结构和相对稳定性,并确定了有用的通用趋势。Na-K 体系具有形成具有较小应变的多二十面体 (pIh) 结构的近乎最佳尺寸不匹配。在尺寸不匹配较大的体系(Na-Cs 和 Li-Cs)中,pIh 堆积的挫折会导致某些成分的核心重构,转而采用十面体堆积。当尺寸不匹配小于最佳值(Li-Na)时,挫折会导致结构部分非晶化。除了少数成分外,所有系统的过剩能均为负值,表明这四种混合物具有反应性。此外,我们发现 Li-Cs 和 Li-Na 混合物比 Na-K 和 Na-Cs 混合物更具反应性(即具有更负的过剩能),因此在比较不同材料时的稳定性趋势与在体相极限中观察到的趋势完全相反:在纳米尺度上,强烈的非反应性 Li-碱金属体相混合物变得最具反应性。对于每种材料,我们确定了使过剩能最小化的魔法成分 x(m)。由于空间拥挤效应,x(m) 随着尺寸不匹配的增加而增加,对于 Li(x)Cs(55-x),最稳定的团簇具有几乎等原子组成。我们提出了一个简单的几何堆积规则,足以系统地组织具有大尺寸不匹配的系统(Na-K、Na-Cs 和 Li-Cs)中的所有观察到的趋势。然而,随着尺寸不匹配的减小,电子壳层效应变得越来越重要,并对 Li-Na 系统的稳定性做出了重大贡献。