Ge Bao, Guo Lei, Lv Jinglei, Hu Xintao, Han Junwei, Zhang Tuo, Liu Tianming
School of Automation, Northwestern Polytechnical University, Xi'an, China.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):149-56. doi: 10.1007/978-3-642-23629-7_19.
Fiber clustering is a prerequisite step towards tract-based analysis of white mater integrity via diffusion tensor imaging (DTI) in various clinical neuroscience applications. Many methods reported in the literature used geometric or anatomic information for fiber clustering. This paper proposes a novel method that uses functional coherence as the criterion to guide the clustering of fibers derived from DTI tractography. Specifically, we represent the functional identity of a white matter fiber by two resting state fMRI (rsfMRI) time series extracted from the two gray matter voxels to which the fiber connects. Then, the functional coherence or similarity between two white matter fibers is defined as their rsfMRI time series' correlations, and the data-driven affinity propagation (AP) algorithm is used to cluster fibers into bundles. At current stage, we use the corpus callosum (CC) fibers that are the largest fiber bundle in the brain as an example. Experimental results show that the proposed fiber clustering method can achieve meaningful bundles that are reasonably consistent across different brains, and part of the clustered bundles was validated via the benchmark data provided by task-based fMRI data.
在各种临床神经科学应用中,纤维聚类是通过扩散张量成像(DTI)对白质完整性进行基于纤维束分析的前提步骤。文献中报道的许多方法使用几何或解剖学信息进行纤维聚类。本文提出了一种新方法,该方法使用功能相干性作为准则来指导从DTI纤维束成像中获得的纤维聚类。具体而言,我们通过从白质纤维连接的两个灰质体素中提取的两个静息态功能磁共振成像(rsfMRI)时间序列来表示白质纤维的功能特性。然后,将两个白质纤维之间的功能相干性或相似性定义为它们的rsfMRI时间序列的相关性,并使用数据驱动的亲和传播(AP)算法将纤维聚类成束。在现阶段,我们以大脑中最大的纤维束胼胝体(CC)纤维为例。实验结果表明,所提出的纤维聚类方法可以实现有意义的纤维束,这些纤维束在不同大脑之间具有合理的一致性,并且部分聚类纤维束通过基于任务的功能磁共振成像数据提供的基准数据得到了验证。