Klein Stefan, Staring Marius, Andersson Patrik, Pluim Josien P W
Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam, The Netherlands.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):549-56. doi: 10.1007/978-3-642-23629-7_67.
We present a stochastic optimisation method for intensity-based monomodal image registration. The method is based on a Robbins-Monro stochastic gradient descent method with adaptive step size estimation, and adds a preconditioning matrix. The derivation of the pre-conditioner is based on the observation that, after registration, the deformed moving image should approximately equal the fixed image. This prior knowledge allows us to approximate the Hessian at the minimum of the registration cost function, without knowing the coordinate transformation that corresponds to this minimum. The method is validated on 3D fMRI time-series and 3D CT chest follow-up scans. The experimental results show that the preconditioning strategy improves the rate of convergence.
我们提出了一种基于强度的单模态图像配准的随机优化方法。该方法基于具有自适应步长估计的罗宾斯-门罗随机梯度下降法,并添加了一个预处理矩阵。预处理器的推导基于这样的观察:配准后,变形的运动图像应近似等于固定图像。这种先验知识使我们能够在不知道对应于该最小值的坐标变换的情况下,近似配准代价函数最小值处的海森矩阵。该方法在3D功能磁共振成像时间序列和3D胸部CT随访扫描上得到了验证。实验结果表明,预处理策略提高了收敛速度。