Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA.
ACS Nano. 2011 Nov 22;5(11):9154-60. doi: 10.1021/nn203381k. Epub 2011 Oct 20.
The properties of a graphene nanostructure are strongly influenced by the arrangement of the atoms on its edge. Growing graphene nanostructures with specified edge types in practical, scalable ways has proven challenging, with limited success to date. Here we report a method for producing graphene flakes with hexagonal shape over large areas, by a brief chemical vapor deposition growth at atmospheric pressure on polished Cu catalyst foil, with limited carbon feedstock. Raman spectra show evidence that the edges of the hexagonal crystallites are predominantly oriented along the zigzag direction. Density functional theory calculations demonstrate that the edge selectivity derives from favorable kinetics of sequential incorporation of carbon atoms to the vacancies in nonzigzag portions of the edges, driving the edges to pure zigzag geometry. This work represents an important step toward realization of graphene electronics with controlled edge geometries, which might find use in digital logic applications or zigzag-edge-based spintronic devices.
石墨烯纳米结构的性质强烈受到其边缘原子排列的影响。迄今为止,通过实际的、可扩展的方法以指定的边缘类型生长石墨烯纳米结构一直具有挑战性,并且取得的成功有限。在这里,我们报告了一种在抛光的 Cu 催化剂箔上在大气压力下通过短暂的化学气相沉积生长来生产大面积具有六方形状的石墨烯薄片的方法,所用的碳原料有限。拉曼光谱表明,六方晶体的边缘主要沿着锯齿形方向取向。密度泛函理论计算表明,边缘选择性源于碳原子优先沿着边缘的非锯齿部分的空位进行顺序掺入的有利动力学,从而使边缘变为纯锯齿形几何形状。这项工作是朝着实现具有受控边缘几何形状的石墨烯电子学迈出的重要一步,这可能在数字逻辑应用或基于锯齿形边缘的自旋电子器件中找到用途。