Suppr超能文献

运动支原体细胞经去污剂处理后伸长及其在滑行中的旋转运动。

Mycoplasma mobile cells elongated by detergent and their pivoting movements in gliding.

机构信息

Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan.

出版信息

J Bacteriol. 2012 Jan;194(1):122-30. doi: 10.1128/JB.05857-11. Epub 2011 Oct 14.

Abstract

Mycoplasma mobile glides on solid surfaces by the repeated binding of leg structures to sialylated oligosaccharide fixed on a solid surface. To obtain information about the propulsion caused by the leg, we made elongated and stiff cells using a detergent. Within 30 min after the cells were treated with 0.1% Tween 60, the cells were elongated from 0.8 μm to 2.2 μm in length while maintaining their gliding activity. Fluorescence and electron microscopy showed that a part of the cytoskeletal structure was elongated, while the localization of proteins involved in the gliding was not modified significantly. The elongated cells glided with repeated pivoting around the cellular position of gliding machinery by 10 degrees of amplitude at a frequency of 2 to 3 times per second, suggesting that the propulsion in a line perpendicular to the cell axis can occur with different timings. The pivoting speed decreased as the cell length increased, probably from the load generated by the friction. The torque required to achieve the actual pivoting increased with the cell length without saturation, reaching 54.7 pN nm at 4.3 μm in cell length.

摘要

黏支原体通过腿部结构反复与固定在固体表面上的唾液酸化寡糖结合在固体表面上滑行。为了获得腿部引起的推进信息,我们使用去污剂制造了伸长且坚硬的细胞。在细胞用 0.1%吐温 60 处理 30 分钟后,细胞从 0.8μm伸长至 2.2μm,同时保持其滑行活性。荧光和电子显微镜显示,一部分细胞骨架结构伸长,而参与滑行的蛋白质的定位没有显著改变。伸长的细胞以 2 到 3 次/秒的频率以 10 度的幅度围绕滑行机构的细胞位置反复枢转,这表明可以以不同的时间间隔发生垂直于细胞轴的直线推进。枢转速度随着细胞长度的增加而降低,可能是由于摩擦力产生的负载。实现实际枢转所需的扭矩随着细胞长度的增加而增加,但没有达到饱和,在细胞长度为 4.3μm 时达到 54.7pNnm。

相似文献

1
Mycoplasma mobile cells elongated by detergent and their pivoting movements in gliding.
J Bacteriol. 2012 Jan;194(1):122-30. doi: 10.1128/JB.05857-11. Epub 2011 Oct 14.
3
Gliding Direction of Mycoplasma mobile.
J Bacteriol. 2015 Oct 26;198(2):283-90. doi: 10.1128/JB.00499-15. Print 2016 Jan 15.
5
Force and velocity of mycoplasma mobile gliding.
J Bacteriol. 2002 Apr;184(7):1827-31. doi: 10.1128/JB.184.7.1827-1831.2002.
6
Movement on the cell surface of the gliding bacterium, Mycoplasma mobile, is limited to its head-like structure.
FEMS Microbiol Lett. 2002 Oct 8;215(2):285-9. doi: 10.1111/j.1574-6968.2002.tb11404.x.
7
Force and Stepwise Movements of Gliding Motility in Human Pathogenic Bacterium .
Front Microbiol. 2021 Sep 24;12:747905. doi: 10.3389/fmicb.2021.747905. eCollection 2021.
8
Gliding ghosts of Mycoplasma mobile.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12754-8. doi: 10.1073/pnas.0506114102. Epub 2005 Aug 26.
9
Movements of Mycoplasma mobile Gliding Machinery Detected by High-Speed Atomic Force Microscopy.
mBio. 2021 Jun 29;12(3):e0004021. doi: 10.1128/mBio.00040-21. Epub 2021 May 28.
10
Behaviors and Energy Source of Gliding.
J Bacteriol. 2019 Sep 6;201(19). doi: 10.1128/JB.00397-19. Print 2019 Oct 1.

引用本文的文献

1
Internal structure of gliding machinery analyzed by negative staining electron tomography.
Biophys Physicobiol. 2024 May 28;21(2):e210015. doi: 10.2142/biophysico.bppb-v21.0015. eCollection 2024.
2
Filamentous structures in the cell envelope are associated with bacteroidetes gliding machinery.
Commun Biol. 2023 Jan 23;6(1):94. doi: 10.1038/s42003-023-04472-3.
3
Reconstitution of a minimal motility system based on swimming by two bacterial actins in a synthetic minimal bacterium.
Sci Adv. 2022 Dec 2;8(48):eabo7490. doi: 10.1126/sciadv.abo7490. Epub 2022 Nov 30.
4
Movements of Mycoplasma mobile Gliding Machinery Detected by High-Speed Atomic Force Microscopy.
mBio. 2021 Jun 29;12(3):e0004021. doi: 10.1128/mBio.00040-21. Epub 2021 May 28.
5
Identification and sequence analyses of the gliding machinery proteins from Mycoplasma mobile.
Sci Rep. 2020 Mar 2;10(1):3792. doi: 10.1038/s41598-020-60535-z.
8
Linear motor driven-rotary motion of a membrane-permeabilized ghost in Mycoplasma mobile.
Sci Rep. 2018 Jul 31;8(1):11513. doi: 10.1038/s41598-018-29875-9.
9
Detailed Analyses of Stall Force Generation in Mycoplasma mobile Gliding.
Biophys J. 2018 Mar 27;114(6):1411-1419. doi: 10.1016/j.bpj.2018.01.029.

本文引用的文献

1
Sequence analysis of the gliding protein Gli349 in .
Biophysics (Nagoya-shi). 2005 May 25;1:33-43. doi: 10.2142/biophysics.1.33. eCollection 2005.
2
Unique centipede mechanism of Mycoplasma gliding.
Annu Rev Microbiol. 2010;64:519-37. doi: 10.1146/annurev.micro.112408.134116.
3
Motor-substrate interactions in mycoplasma motility explains non-Arrhenius temperature dependence.
Biophys J. 2009 Dec 2;97(11):2930-8. doi: 10.1016/j.bpj.2009.09.020.
4
Triskelion structure of the Gli521 protein, involved in the gliding mechanism of Mycoplasma mobile.
J Bacteriol. 2010 Feb;192(3):636-42. doi: 10.1128/JB.01143-09. Epub 2009 Nov 13.
8
Centipede and inchworm models to explain Mycoplasma gliding.
Trends Microbiol. 2008 Jan;16(1):6-12. doi: 10.1016/j.tim.2007.11.002. Epub 2007 Dec 20.
9
Cytoskeletal "jellyfish" structure of Mycoplasma mobile.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19518-23. doi: 10.1073/pnas.0704280104. Epub 2007 Nov 27.
10
Mycoplasma pneumoniae host-pathogen studies in an air-liquid culture of differentiated human airway epithelial cells.
Microb Pathog. 2007 Feb-Mar;42(2-3):98-103. doi: 10.1016/j.micpath.2006.11.003. Epub 2007 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验