Suppr超能文献

脆性 X 综合征患者诱导多能干细胞模型中 FMR1 基因的表观遗传学特征及神经发育异常。

Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome.

机构信息

Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.

出版信息

PLoS One. 2011;6(10):e26203. doi: 10.1371/journal.pone.0026203. Epub 2011 Oct 12.

Abstract

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. In addition to cognitive deficits, FXS patients exhibit hyperactivity, attention deficits, social difficulties, anxiety, and other autistic-like behaviors. FXS is caused by an expanded CGG trinucleotide repeat in the 5' untranslated region of the Fragile X Mental Retardation (FMR1) gene leading to epigenetic silencing and loss of expression of the Fragile X Mental Retardation protein (FMRP). Despite the known relationship between FMR1 CGG repeat expansion and FMR1 silencing, the epigenetic modifications observed at the FMR1 locus, and the consequences of the loss of FMRP on human neurodevelopment and neuronal function remain poorly understood. To address these limitations, we report on the generation of induced pluripotent stem cell (iPSC) lines from multiple patients with FXS and the characterization of their differentiation into post-mitotic neurons and glia. We show that clones from reprogrammed FXS patient fibroblast lines exhibit variation with respect to the predominant CGG-repeat length in the FMR1 gene. In two cases, iPSC clones contained predominant CGG-repeat lengths shorter than measured in corresponding input population of fibroblasts. In another instance, reprogramming a mosaic patient having both normal and pre-mutation length CGG repeats resulted in genetically matched iPSC clonal lines differing in FMR1 promoter CpG methylation and FMRP expression. Using this panel of patient-specific, FXS iPSC models, we demonstrate aberrant neuronal differentiation from FXS iPSCs that is directly correlated with epigenetic modification of the FMR1 gene and a loss of FMRP expression. Overall, these findings provide evidence for a key role for FMRP early in human neurodevelopment prior to synaptogenesis and have implications for modeling of FXS using iPSC technology. By revealing disease-associated cellular phenotypes in human neurons, these iPSC models will aid in the discovery of novel therapeutics for FXS and other autism-spectrum disorders sharing common pathophysiology.

摘要

脆性 X 综合征(FXS)是智力障碍最常见的遗传原因。除认知缺陷外,FXS 患者还表现出多动、注意力缺陷、社交困难、焦虑和其他类似自闭症的行为。FXS 是由于脆性 X 智力低下 1 号基因(FMR1)的 5'非翻译区中 CGG 三核苷酸重复扩展导致表观遗传沉默和脆性 X 智力低下蛋白(FMRP)表达缺失引起的。尽管已知 FMR1 CGG 重复扩展与 FMR1 沉默之间存在关系,FMR1 基因座上观察到的表观遗传修饰以及 FMRP 缺失对人类神经发育和神经元功能的影响仍知之甚少。为了解决这些限制,我们报告了从多个 FXS 患者中生成诱导多能干细胞(iPSC)系,并对其分化为有丝分裂后神经元和神经胶质细胞的特性进行了描述。我们表明,来自重新编程的 FXS 患者成纤维细胞系的克隆在 FMR1 基因中主要 CGG-重复长度方面表现出变异性。在两种情况下,iPSC 克隆包含的主要 CGG-重复长度短于相应成纤维细胞输入群体中测量的长度。在另一种情况下,重新编程具有正常和前突变长度 CGG 重复的镶嵌患者导致遗传匹配的 iPSC 克隆系在 FMR1 启动子 CpG 甲基化和 FMRP 表达方面存在差异。使用该患者特异性 FXS iPSC 模型组,我们证明了源自 FXS iPSC 的异常神经元分化与 FMR1 基因的表观遗传修饰和 FMRP 表达缺失直接相关。总体而言,这些发现为 FMRP 在突触发生之前的人类神经发育早期发挥关键作用提供了证据,并为使用 iPSC 技术对 FXS 进行建模提供了依据。通过在人类神经元中揭示与疾病相关的细胞表型,这些 iPSC 模型将有助于发现 FXS 和其他具有共同病理生理学的自闭症谱系障碍的新型治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e13c/3192166/44ad79352f1c/pone.0026203.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验