University of Northern Iowa, Cedar Falls.
IEEE/ACM Trans Comput Biol Bioinform. 2012;9(2):511-6. doi: 10.1109/TCBB.2011.133. Epub 2011 Oct 17.
We study the well known LCP (Largest Common Point-Set) under Bottleneck Distance Problem. Given two proteins a and b (as sequences of points in 3D space) and a distance cutoff σ, the goal is to find a spatial superposition and an alignment that maximizes the number of pairs of points from a and b that can be fit under the distance σ from each other. The best to date algorithms for approximate and exact solution to this problem run in time O(n^8) and O(n^32), respectively, where n represents the protein length. This work improves the runtime of the approximation algorithm and the algorithm for absolute optimum for both order-dependent and order-independent alignments. More specifically, our algorithms for near-optimal and optimal sequential alignments run in time O(^7 log n) and O(n^14 log n), respectively. For non-sequential alignments, corresponding running times are O(n^7.5) and O(n^14.5).
我们研究了著名的瓶颈距离问题下的最大公共点集 (LCP)。给定两个蛋白质 a 和 b(作为 3D 空间中的点序列)和距离截止值 σ,目标是找到一个空间叠加和对齐,使得可以在距离 σ 内拟合来自 a 和 b 的点对的数量最大化。迄今为止,该问题的近似和精确解决方案的最佳算法分别在时间复杂度 O(n^8) 和 O(n^32) 内运行,其中 n 表示蛋白质长度。这项工作改进了近似算法和绝对最优算法的运行时间,适用于顺序相关和顺序无关的对齐。更具体地说,我们用于近似最优和最优顺序对齐的算法分别在时间复杂度 O(^7 log n) 和 O(n^14 log n) 内运行。对于非顺序对齐,相应的运行时间分别为 O(n^7.5) 和 O(n^14.5)。