Suppr超能文献

距离约束下蛋白质结构比对问题的复杂性。

On complexity of protein structure alignment problem under distance constraint.

机构信息

University of Northern Iowa, Cedar Falls.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2012;9(2):511-6. doi: 10.1109/TCBB.2011.133. Epub 2011 Oct 17.

Abstract

We study the well known LCP (Largest Common Point-Set) under Bottleneck Distance Problem. Given two proteins a and b (as sequences of points in 3D space) and a distance cutoff σ, the goal is to find a spatial superposition and an alignment that maximizes the number of pairs of points from a and b that can be fit under the distance σ from each other. The best to date algorithms for approximate and exact solution to this problem run in time O(n^8) and O(n^32), respectively, where n represents the protein length. This work improves the runtime of the approximation algorithm and the algorithm for absolute optimum for both order-dependent and order-independent alignments. More specifically, our algorithms for near-optimal and optimal sequential alignments run in time O(^7 log n) and O(n^14 log n), respectively. For non-sequential alignments, corresponding running times are O(n^7.5) and O(n^14.5).

摘要

我们研究了著名的瓶颈距离问题下的最大公共点集 (LCP)。给定两个蛋白质 a 和 b(作为 3D 空间中的点序列)和距离截止值 σ,目标是找到一个空间叠加和对齐,使得可以在距离 σ 内拟合来自 a 和 b 的点对的数量最大化。迄今为止,该问题的近似和精确解决方案的最佳算法分别在时间复杂度 O(n^8) 和 O(n^32) 内运行,其中 n 表示蛋白质长度。这项工作改进了近似算法和绝对最优算法的运行时间,适用于顺序相关和顺序无关的对齐。更具体地说,我们用于近似最优和最优顺序对齐的算法分别在时间复杂度 O(^7 log n) 和 O(n^14 log n) 内运行。对于非顺序对齐,相应的运行时间分别为 O(n^7.5) 和 O(n^14.5)。

相似文献

1
On complexity of protein structure alignment problem under distance constraint.
IEEE/ACM Trans Comput Biol Bioinform. 2012;9(2):511-6. doi: 10.1109/TCBB.2011.133. Epub 2011 Oct 17.
2
Algorithms for optimal protein structure alignment.
Bioinformatics. 2009 Nov 1;25(21):2751-6. doi: 10.1093/bioinformatics/btp530. Epub 2009 Sep 4.
3
Improved algorithms for matching r-separated sets with applications to protein structure alignment.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Jan-Feb;10(1):226-9. doi: 10.1109/TCBB.2012.135.
5
Searching protein 3-D structures in linear time.
J Comput Biol. 2010 Mar;17(3):203-19. doi: 10.1089/cmb.2009.0148.
6
Finding All Longest Common Segments in Protein Structures Efficiently.
IEEE/ACM Trans Comput Biol Bioinform. 2015 May-Jun;12(3):644-55. doi: 10.1109/TCBB.2014.2372782.
7
The k partition-distance problem.
J Comput Biol. 2012 Apr;19(4):404-17. doi: 10.1089/cmb.2010.0186.
8
Protein local structure alignment under the discrete Fréchet distance.
J Comput Biol. 2007 Dec;14(10):1343-51. doi: 10.1089/cmb.2007.0156.
9
Probabilistic description of protein alignments for sequences and structures.
Proteins. 2004 Jul 1;56(1):157-66. doi: 10.1002/prot.20067.
10
DALIX: optimal DALI protein structure alignment.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Jan-Feb;10(1):26-36. doi: 10.1109/TCBB.2012.143.

引用本文的文献

1
Dynamic programming used to align protein structures with a spectrum is robust.
Biology (Basel). 2013 Nov 20;2(4):1296-310. doi: 10.3390/biology2041296.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验