Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Phys Rev Lett. 2011 Sep 16;107(12):125501. doi: 10.1103/PhysRevLett.107.125501. Epub 2011 Sep 13.
The densest binary sphere packings have historically been very difficult to determine. The only rigorously known packings in the α-x plane of sphere radius ratio α and relative concentration x are at the Kepler limit α=1, where packings are monodisperse. Utilizing an implementation of the Torquato-Jiao sphere-packing algorithm [S. Torquato and Y. Jiao, Phys. Rev. E 82, 061302 (2010)], we present the most comprehensive determination to date of the phase diagram in (α,x) for the densest binary sphere packings. Unexpectedly, we find many distinct new densest packings.
历史上,最密集的二进制球堆一直很难确定。在球半径比α和相对浓度 x 的α-x 平面上,唯一经过严格证明的堆积是在开普勒极限α=1 处,在那里堆积是单分散的。利用 Torquato-Jiao 球堆积算法的实现 [S. Torquato 和 Y. Jiao, Phys. Rev. E 82, 061302 (2010)],我们目前最全面地确定了最密集的二进制球堆积的(α,x)相图。出乎意料的是,我们发现了许多新的密集堆积。