Drug Design & Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, CAS Shanghai, P R China.
J Phys Chem B. 2011 Dec 15;115(49):14831-7. doi: 10.1021/jp207801e. Epub 2011 Nov 18.
To evaluate the role of adenosine in low energy electron (LEE) induced DNA strand breaks, theoretical investigations of the LEE attachment induced C-O σ bonds and N-glycosidic bond breaking of 2'-deoxyadenosine-3',5'-diphosphate (3',5'-dAMP) were performed at the B3LYP/DZP++ level of theory. The results indicate that, although adenine-rich oligonucleotides are capable of capturing the near 0 eV electron to form the electronically stable radical anions in the gas phase, it is unlikely to undergo either C-O σ bond cleavage or the glycosidic processes due to the low electron detachment energy (VDE) of 3',5'-dADP(-) unit (0.26 eV). Instead, these radical anions should directly yield an electron detachment product in the gas phase. In the presence of polarizable surroundings, due to the large increase of the electron detachment energy (VDE increases to 1.59 eV), the adenine-centered radical anions could directly lead to strand breaks in the adenine-rich DNA single strands through either σ bond or N-glycosidic bond breaking. The values of activation energy for rupture of the C(5')-O(5') σ bond (22.5 kcal/mol), the N-glycosidic bond (20.2 kcal/mol), and the C(3')-O(3') σ bond (13.2 kcal/mol) indicate that C(3')-O(3') σ bond breaking should dominate. Moreover, along with the previous research, the predicted ratio of the activation energy barrier of the C(5')-O(5') σ bond breakage in 3',5'-dXDP(-) (X = G, A, T) partly explains the observation in the femtosecond time-resolved laser spectroscopic experiment that the C(5')-O(5') σ bond breaking only occurs in dGMP(-) and dTMP(-) not in dAMP(-). This study completes the series of LEE-induced DNA single strand breaking investigations for the four basic DNA units 3',5'-dXDP (X = G, A, T, C). The obtained results are vital for elucidating the experimental observations. Combined with the previous studies, the information revealed in this study is crucial for understanding the mechanisms of the interactions between the LEE and the DNA stands.
为了评估腺嘌呤核苷在低能电子(LEE)诱导的 DNA 链断裂中的作用,我们在 B3LYP/DZP++理论水平上对 LEE 附加诱导的 C-Oσ键和 2'-脱氧腺苷-3',5'-二磷酸(3',5'-dAMP)的 N-糖苷键断裂进行了理论研究。结果表明,尽管富含腺嘌呤的寡核苷酸能够捕获近 0 eV 的电子,在气相中形成电子稳定的自由基阴离子,但由于 3',5'-dADP(-)单元的电子脱离能(VDE)较低(0.26 eV),它不太可能经历 C-Oσ键断裂或糖苷过程。相反,这些自由基阴离子应该直接在气相中产生电子脱离产物。在极化环境存在的情况下,由于电子脱离能的大幅增加(VDE 增加到 1.59 eV),位于腺嘌呤中心的自由基阴离子可以通过σ键或 N-糖苷键断裂直接导致富含腺嘌呤的 DNA 单链断裂。C(5')-O(5')σ键(22.5 kcal/mol)、N-糖苷键(20.2 kcal/mol)和 C(3')-O(3')σ键(13.2 kcal/mol)的断裂活化能值表明,C(3')-O(3')σ键断裂应该占主导地位。此外,结合先前的研究,预测的 3',5'-dXDP(-)(X = G、A、T)中 C(5')-O(5')σ键断裂的活化能屏障比部分解释了在飞秒时间分辨激光光谱实验中观察到的 C(5')-O(5')σ键断裂仅发生在 dGMP(-)和 dTMP(-)中而不在 dAMP(-)中的现象。本研究完成了对四种基本 DNA 单元 3',5'-dXDP(X = G、A、T、C)的 LEE 诱导 DNA 单链断裂研究系列。所得结果对于阐明实验观察结果至关重要。结合以前的研究,本研究中揭示的信息对于理解 LEE 与 DNA 链相互作用的机制至关重要。