Suppr超能文献

主动安全监测研究通用数据模型的验证。

Validation of a common data model for active safety surveillance research.

机构信息

Regenstrief Institute, Indiana University, School of Medicine, Indianapolis, Indiana, USA.

出版信息

J Am Med Inform Assoc. 2012 Jan-Feb;19(1):54-60. doi: 10.1136/amiajnl-2011-000376. Epub 2011 Oct 28.

Abstract

OBJECTIVE

Systematic analysis of observational medical databases for active safety surveillance is hindered by the variation in data models and coding systems. Data analysts often find robust clinical data models difficult to understand and ill suited to support their analytic approaches. Further, some models do not facilitate the computations required for systematic analysis across many interventions and outcomes for large datasets. Translating the data from these idiosyncratic data models to a common data model (CDM) could facilitate both the analysts' understanding and the suitability for large-scale systematic analysis. In addition to facilitating analysis, a suitable CDM has to faithfully represent the source observational database. Before beginning to use the Observational Medical Outcomes Partnership (OMOP) CDM and a related dictionary of standardized terminologies for a study of large-scale systematic active safety surveillance, the authors validated the model's suitability for this use by example.

VALIDATION BY EXAMPLE

To validate the OMOP CDM, the model was instantiated into a relational database, data from 10 different observational healthcare databases were loaded into separate instances, a comprehensive array of analytic methods that operate on the data model was created, and these methods were executed against the databases to measure performance.

CONCLUSION

There was acceptable representation of the data from 10 observational databases in the OMOP CDM using the standardized terminologies selected, and a range of analytic methods was developed and executed with sufficient performance to be useful for active safety surveillance.

摘要

目的

由于数据模型和编码系统的差异,对观察性医学数据库进行主动安全性监测的系统分析受到阻碍。数据分析人员经常发现强大的临床数据模型难以理解,不适合支持他们的分析方法。此外,某些模型不便于为大型数据集的许多干预措施和结果进行系统分析所需的计算。将这些特殊数据模型中的数据转换为通用数据模型(CDM)可以促进分析师的理解和大规模系统分析的适用性。除了便于分析外,合适的 CDM 还必须忠实地表示源观察数据库。在开始使用观察性医学结局伙伴关系(OMOP)CDM 和相关的标准化术语字典进行大规模系统主动安全性监测研究之前,作者通过示例验证了该模型在此用途上的适用性。

示例验证

为了验证 OMOP CDM,将模型实例化为关系数据库,将来自 10 个不同观察性医疗保健数据库的数据加载到单独的实例中,创建了一套全面的针对数据模型的分析方法,并针对数据库执行这些方法以衡量性能。

结论

使用选定的标准化术语,在 OMOP CDM 中可以接受地表示来自 10 个观察性数据库的数据,并且已经开发和执行了一系列分析方法,其性能足以用于主动安全性监测。

相似文献

1
Validation of a common data model for active safety surveillance research.
J Am Med Inform Assoc. 2012 Jan-Feb;19(1):54-60. doi: 10.1136/amiajnl-2011-000376. Epub 2011 Oct 28.
3
The OMOP common data model in Australian primary care data: Building a quality research ready harmonised dataset.
PLoS One. 2024 Apr 18;19(4):e0301557. doi: 10.1371/journal.pone.0301557. eCollection 2024.
8
A Semantic Transformation Methodology for the Secondary Use of Observational Healthcare Data in Postmarketing Safety Studies.
Front Pharmacol. 2018 Apr 30;9:435. doi: 10.3389/fphar.2018.00435. eCollection 2018.
9
Feasibility and utility of applications of the common data model to multiple, disparate observational health databases.
J Am Med Inform Assoc. 2015 May;22(3):553-64. doi: 10.1093/jamia/ocu023. Epub 2015 Feb 10.
10
ADEpedia-on-OHDSI: A next generation pharmacovigilance signal detection platform using the OHDSI common data model.
J Biomed Inform. 2019 Mar;91:103119. doi: 10.1016/j.jbi.2019.103119. Epub 2019 Feb 7.

引用本文的文献

5
Assessing the Data Quality Dimensions of Surgical Oncology Cohorts in the Research Program.
JCO Clin Cancer Inform. 2025 Jul;9:e2500078. doi: 10.1200/CCI-25-00078. Epub 2025 Jul 8.
6
Endometriosis and autoimmunity: a large-scale case-control study of endometriosis and 10 distinct autoimmune diseases.
NPJ Womens Health. 2025;3(1):36. doi: 10.1038/s44294-025-00086-8. Epub 2025 Jun 18.
7
A Generalized Tool to Assess Algorithmic Fairness in Disease Phenotype Definitions.
AMIA Jt Summits Transl Sci Proc. 2025 Jun 10;2025:624-633. eCollection 2025.

本文引用的文献

1
Advancing the science for active surveillance: rationale and design for the Observational Medical Outcomes Partnership.
Ann Intern Med. 2010 Nov 2;153(9):600-6. doi: 10.7326/0003-4819-153-9-201011020-00010.
3
Guidelines for the effective use of entity-attribute-value modeling for biomedical databases.
Int J Med Inform. 2007 Nov-Dec;76(11-12):769-79. doi: 10.1016/j.ijmedinf.2006.09.023. Epub 2006 Nov 13.
4
Randomized, controlled trials, observational studies, and the hierarchy of research designs.
N Engl J Med. 2000 Jun 22;342(25):1887-92. doi: 10.1056/NEJM200006223422507.
5
A comparison of observational studies and randomized, controlled trials.
N Engl J Med. 2000 Jun 22;342(25):1878-86. doi: 10.1056/NEJM200006223422506.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验