Suppr超能文献

快速眼动睡眠和觉醒的因果基因、网络和转录调控因子的鉴定。

Identification of causal genes, networks, and transcriptional regulators of REM sleep and wake.

机构信息

Sage Bionetworks, Seattle, WA, USA.

出版信息

Sleep. 2011 Nov 1;34(11):1469-77. doi: 10.5665/sleep.1378.

Abstract

STUDY OBJECTIVE

Sleep-wake traits are well-known to be under substantial genetic control, but the specific genes and gene networks underlying primary sleep-wake traits have largely eluded identification using conventional approaches, especially in mammals. Thus, the aim of this study was to use systems genetics and statistical approaches to uncover the genetic networks underlying 2 primary sleep traits in the mouse: 24-h duration of REM sleep and wake.

DESIGN

Genome-wide RNA expression data from 3 tissues (anterior cortex, hypothalamus, thalamus/midbrain) were used in conjunction with high-density genotyping to identify candidate causal genes and networks mediating the effects of 2 QTL regulating the 24-h duration of REM sleep and one regulating the 24-h duration of wake.

SETTING

Basic sleep research laboratory.

PATIENTS OR PARTICIPANTS

Male [C57BL/6J × (BALB/cByJ × C57BL/6J*) F1] N(2) mice (n = 283).

INTERVENTIONS

None.

MEASUREMENTS AND RESULTS

The genetic variation of a mouse N2 mapping cross was leveraged against sleep-state phenotypic variation as well as quantitative gene expression measurement in key brain regions using integrative genomics approaches to uncover multiple causal sleep-state regulatory genes, including several surprising novel candidates, which interact as components of networks that modulate REM sleep and wake. In particular, it was discovered that a core network module, consisting of 20 genes, involved in the regulation of REM sleep duration is conserved across the cortex, hypothalamus, and thalamus. A novel application of a formal causal inference test was also used to identify those genes directly regulating sleep via control of expression.

CONCLUSION

Systems genetics approaches reveal novel candidate genes, complex networks and specific transcriptional regulators of REM sleep and wake duration in mammals.

摘要

研究目的

睡眠-觉醒特征受遗传因素的显著控制,但使用传统方法,尤其是在哺乳动物中,尚未确定导致原发性睡眠-觉醒特征的具体基因和基因网络。因此,本研究旨在利用系统遗传学和统计方法,揭示影响小鼠两种主要睡眠特征(快速眼动睡眠持续时间和觉醒时间)的遗传网络。

设计

使用来自 3 个组织(前皮质、下丘脑、丘脑/中脑)的全基因组 RNA 表达数据,结合高密度基因分型,鉴定调节 24 小时 REM 睡眠持续时间的 2 个 QTL 和调节 24 小时觉醒持续时间的 1 个 QTL 相关的候选因果基因和网络。

环境

基础睡眠研究实验室。

患者或参与者

雄性 [C57BL/6J×(BALB/cByJ×C57BL/6J*)F1]N(2) 小鼠(n=283)。

干预

无。

测量和结果

利用整合基因组学方法,利用 N2 作图交叉的小鼠遗传变异与睡眠状态表型变异以及关键脑区的定量基因表达测量相结合,揭示了多个因果睡眠状态调节基因,包括几个令人惊讶的新候选基因,这些基因相互作用,形成调节 REM 睡眠和觉醒的网络组件。特别是,发现了一个由 20 个基因组成的核心网络模块,涉及 REM 睡眠持续时间的调节,在皮质、下丘脑和丘脑之间是保守的。还首次应用了一种正式的因果推理测试,以鉴定那些通过控制表达直接调节睡眠的基因。

结论

系统遗传学方法揭示了哺乳动物 REM 睡眠和觉醒持续时间的新候选基因、复杂网络和特定转录调节因子。

相似文献

2
Uncovering the genetic landscape for multiple sleep-wake traits.
PLoS One. 2009;4(4):e5161. doi: 10.1371/journal.pone.0005161. Epub 2009 Apr 10.
3
Pharmacological validation of candidate causal sleep genes identified in an N2 cross.
J Neurogenet. 2011 Dec;25(4):167-81. doi: 10.3109/01677063.2011.628426.
6
[Neurochemical mechanisms of sleep regulation].
Glas Srp Akad Nauka Med. 2009(50):97-109.
8
mRNA expression in mouse hypothalamus and basal forebrain during influenza infection: a novel model for sleep regulation.
Physiol Genomics. 2006 Feb 14;24(3):225-34. doi: 10.1152/physiolgenomics.00005.2005. Epub 2006 Jan 10.

引用本文的文献

1
Predictive network analysis identifies JMJD6 and other potential key drivers in Alzheimer's disease.
Commun Biol. 2023 May 15;6(1):503. doi: 10.1038/s42003-023-04791-5.
3
Oscillating circuitries in the sleeping brain.
Nat Rev Neurosci. 2019 Dec;20(12):746-762. doi: 10.1038/s41583-019-0223-4. Epub 2019 Oct 15.
6
cit: hypothesis testing software for mediation analysis in genomic applications.
Bioinformatics. 2016 Aug 1;32(15):2364-5. doi: 10.1093/bioinformatics/btw135. Epub 2016 Mar 9.
7
A systems approach identifies networks and genes linking sleep and stress: implications for neuropsychiatric disorders.
Cell Rep. 2015 May 5;11(5):835-48. doi: 10.1016/j.celrep.2015.04.003. Epub 2015 Apr 23.
8
Computationally efficient permutation-based confidence interval estimation for tail-area FDR.
Front Genet. 2013 Sep 17;4:179. doi: 10.3389/fgene.2013.00179. eCollection 2013.
9
Gene bionetworks that regulate ovarian primordial follicle assembly.
BMC Genomics. 2013 Jul 23;14:496. doi: 10.1186/1471-2164-14-496.
10
The Growing Importance of CNVs: New Insights for Detection and Clinical Interpretation.
Front Genet. 2013 May 30;4:92. doi: 10.3389/fgene.2013.00092. eCollection 2013.

本文引用的文献

1
Clocks not winding down: unravelling circadian networks.
Nat Rev Mol Cell Biol. 2010 Nov;11(11):764-76. doi: 10.1038/nrm2995.
2
Genomics and systems approaches in the mammalian circadian clock.
Curr Opin Genet Dev. 2010 Dec;20(6):581-7. doi: 10.1016/j.gde.2010.08.009.
3
Assessing the prospects of genome-wide association studies performed in inbred mice.
Mamm Genome. 2010 Apr;21(3-4):143-52. doi: 10.1007/s00335-010-9249-7. Epub 2010 Feb 5.
4
Impact of alcoholism on sleep architecture and EEG power spectra in men and women.
Sleep. 2009 Oct;32(10):1341-52. doi: 10.1093/sleep/32.10.1341.
6
Stiff person syndrome associated anti-amphiphysin antibodies reduce GABA associated [Ca(2+)]i rise in embryonic motoneurons.
Neurobiol Dis. 2009 Oct;36(1):191-9. doi: 10.1016/j.nbd.2009.07.011. Epub 2009 Jul 23.
7
Disentangling molecular relationships with a causal inference test.
BMC Genet. 2009 May 27;10:23. doi: 10.1186/1471-2156-10-23.
8
Uncovering the genetic landscape for multiple sleep-wake traits.
PLoS One. 2009;4(4):e5161. doi: 10.1371/journal.pone.0005161. Epub 2009 Apr 10.
9
Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep.
Nat Genet. 2009 Mar;41(3):371-5. doi: 10.1038/ng.330. Epub 2009 Feb 22.
10
Sleep deprivation increases oleoylethanolamide in human cerebrospinal fluid.
J Neural Transm (Vienna). 2009 Mar;116(3):301-5. doi: 10.1007/s00702-008-0169-6. Epub 2009 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验