Universität Bayreuth, Fakultät für Angewandte Naturwissenschaften, Lehrstuhl Biomaterialien, Universitätsstraße 30, Bayreuth 95447, Germany.
Biopolymers. 2012 Jun;97(6):355-61. doi: 10.1002/bip.22006. Epub 2011 Nov 5.
Fibrous proteins in nature fulfill a wide variety of functions in different structures ranging from cellular scaffolds to very resilient structures like tendons and even extra-corporal fibers such as silks in spider webs or silkworm cocoons. Despite their different origins and sequence varieties many of these fibrous proteins share a common building principle: they consist of a large repetitive core domain flanked by relatively small non-repetitive terminal domains. Amongst protein fibers, spider dragline silk shows prominent mechanical properties that exceed those of man-made fibers like Kevlar. Spider silk fibers assemble in a spinning process allowing the transformation from an aqueous solution into a solid fiber within milliseconds. Here, we highlight the role of the non-repetitive terminal domains of spider dragline silk proteins during storage in the gland and initiation of the fiber assembly process.
自然界中的纤维状蛋白质在不同的结构中发挥着多种多样的功能,从细胞支架到非常有弹性的结构,如肌腱,甚至是体外纤维,如蜘蛛网或蚕茧中的丝。尽管这些纤维状蛋白质的起源和序列种类不同,但它们有一个共同的构建原则:它们由一个大的重复核心结构域和相对较小的非重复末端结构域组成。在蛋白质纤维中,蜘蛛牵引丝显示出突出的机械性能,超过了凯夫拉等人造纤维。蜘蛛丝纤维在纺丝过程中组装,使它们在几毫秒内从水溶液转变为固体纤维。在这里,我们强调了蜘蛛牵引丝蛋白的非重复末端结构域在储存于腺体中和纤维组装过程开始时的作用。