Ritz Mark, Wang Congzhou, Micale Nicola, Ettari Roberta, Niu Li
Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, NY 12222, USA.
ACS Chem Neurosci. 2011 May 12;2(9):506-513. doi: 10.1021/cn200033j.
2,3-Benzodiazepine derivatives are synthesized as drug candidates for a potential treatment of various neurodegenerative diseases involving the excessive activity of AMPA receptors. Here, we describe a rapid kinetic investigation of the mechanism of inhibition of the GluA2Q(flip) AMPA receptor channel opening by two 2,3-benzodiazepine derivatives, i.e. the prototypic 2,3-benzodiazepine compound GYKI 52466 [(1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine)] and 1-(4-aminophenyl)-3,5-dihydro-7,8-methylenedioxy-4H-2,3-benzodiazepin-4-one (BDZ-2). GYKI 52466 and BDZ-2 are structurally similar in that the 4-methyl group in the diazepine ring of GYKI 52466 is replaced by a carbonyl group, yielding BDZ-2. Using a laser-pulse photolysis technique with ∼60 μs time resolution, we characterize the effect of the two compounds individually on the channel-opening process of the GluA2Q(flip) receptor expressed in HEK-293 cells. We find that BDZ-2 preferentially inhibits the open-channel state, whereas GYKI 52466 is more selective for the closed-channel state of the GluA2Q(flip) receptors. Each inhibitor binds independently to its own noncompetitive site, yet the two sites do not interact allosterically. The significance of these results in the context of both the structure-activity relationship and the properties of the GluA2Q(flip) receptor channels is presented.
2,3-苯并二氮杂卓衍生物被合成为潜在治疗涉及AMPA受体过度活性的各种神经退行性疾病的候选药物。在此,我们描述了对两种2,3-苯并二氮杂卓衍生物,即原型2,3-苯并二氮杂卓化合物GYKI 52466 [(1-(4-氨基苯基)-4-甲基-7,8-亚甲基二氧基-5H-2,3-苯并二氮杂卓)]和1-(4-氨基苯基)-3,5-二氢-7,8-亚甲基二氧基-4H-2,3-苯并二氮杂卓-4-酮(BDZ-2)抑制GluA2Q(翻转)AMPA受体通道开放机制的快速动力学研究。GYKI 52466和BDZ-2在结构上相似,因为GYKI 52466二氮杂卓环中的4-甲基被羰基取代,从而产生BDZ-2。使用具有约60微秒时间分辨率的激光脉冲光解技术,我们分别表征了这两种化合物对HEK-293细胞中表达的GluA2Q(翻转)受体通道开放过程的影响。我们发现BDZ-2优先抑制开放通道状态,而GYKI 52466对GluA2Q(翻转)受体的关闭通道状态更具选择性。每种抑制剂独立地与其自身的非竞争性位点结合,但这两个位点不存在变构相互作用。本文阐述了这些结果在结构-活性关系和GluA2Q(翻转)受体通道特性方面的意义。