Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
DNA Repair (Amst). 2012 Jan 2;11(1):35-45. doi: 10.1016/j.dnarep.2011.10.003. Epub 2011 Nov 9.
Primary human somatic cells grown in culture divide a finite number of times, exhibiting progressive changes in metabolism and morphology before cessation of cycling. This telomere-initiated cellular senescence occurs because cells have halted production of telomerase, a DNA polymerase required for stabilization of chromosome ends. Telomerase-deficient Saccharomyces cerevisiae cells undergo a similar process, with most cells arresting growth after approximately 60 generations. In the current study we demonstrate that senescence is largely reversible. Reactivation of telomerase (EST2) expression in the growth-arrested cells led to resumption of cycling and reversal of senescent cell characteristics. Rescue was also observed after mating of senescent haploid cells with telomerase-proficient cells to form stable diploids. Although senescence was reversible in DNA damage checkpoint response mutants (mec3 and/or rad24 cells), survival of recombination-defective rad52 mutants remained low after telomerase reactivation. Telomere lengths in rescued est2 cells were initially half those of wildtype cells, but could be restored to normal by propagation for ∼70 generations in the presence of telomerase. These results place limitations on possible models for senescence and indicate that most cells, despite gross morphological changes and short, resected telomeres, do not experience lethal DNA damage and become irreversibly committed to death.
原代人体成体细胞在培养中分裂的次数有限,在停止循环之前,其代谢和形态会发生渐进性变化。这种端粒引发的细胞衰老发生的原因是细胞已经停止了端粒酶的产生,端粒酶是一种稳定染色体末端所必需的 DNA 聚合酶。缺乏端粒酶的酿酒酵母细胞也会经历类似的过程,大多数细胞在大约 60 代后停止生长。在本研究中,我们证明衰老在很大程度上是可逆的。在生长停滞的细胞中重新激活端粒酶(EST2)的表达,导致细胞周期的恢复和衰老细胞特征的逆转。在衰老的单倍体细胞与端粒酶功能正常的细胞交配形成稳定的二倍体后,也观察到了挽救。尽管在 DNA 损伤检查点反应突变体(mec3 和/或 rad24 细胞)中,衰老可以被逆转,但在端粒酶重新激活后,重组缺陷的 rad52 突变体的存活率仍然很低。在挽救的 est2 细胞中,端粒长度最初是野生型细胞的一半,但在端粒酶存在的情况下,通过大约 70 代的繁殖,可以恢复到正常水平。这些结果限制了衰老的可能模型,并表明尽管大多数细胞经历了巨大的形态变化和短的切除端粒,但它们不会经历致命的 DNA 损伤,并且不会不可逆地走向死亡。