Suppr超能文献

酿酒酵母复制性衰老的可逆性:同源重组和细胞周期检查点的影响。

Reversibility of replicative senescence in Saccharomyces cerevisiae: effect of homologous recombination and cell cycle checkpoints.

机构信息

Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.

出版信息

DNA Repair (Amst). 2012 Jan 2;11(1):35-45. doi: 10.1016/j.dnarep.2011.10.003. Epub 2011 Nov 9.

Abstract

Primary human somatic cells grown in culture divide a finite number of times, exhibiting progressive changes in metabolism and morphology before cessation of cycling. This telomere-initiated cellular senescence occurs because cells have halted production of telomerase, a DNA polymerase required for stabilization of chromosome ends. Telomerase-deficient Saccharomyces cerevisiae cells undergo a similar process, with most cells arresting growth after approximately 60 generations. In the current study we demonstrate that senescence is largely reversible. Reactivation of telomerase (EST2) expression in the growth-arrested cells led to resumption of cycling and reversal of senescent cell characteristics. Rescue was also observed after mating of senescent haploid cells with telomerase-proficient cells to form stable diploids. Although senescence was reversible in DNA damage checkpoint response mutants (mec3 and/or rad24 cells), survival of recombination-defective rad52 mutants remained low after telomerase reactivation. Telomere lengths in rescued est2 cells were initially half those of wildtype cells, but could be restored to normal by propagation for ∼70 generations in the presence of telomerase. These results place limitations on possible models for senescence and indicate that most cells, despite gross morphological changes and short, resected telomeres, do not experience lethal DNA damage and become irreversibly committed to death.

摘要

原代人体成体细胞在培养中分裂的次数有限,在停止循环之前,其代谢和形态会发生渐进性变化。这种端粒引发的细胞衰老发生的原因是细胞已经停止了端粒酶的产生,端粒酶是一种稳定染色体末端所必需的 DNA 聚合酶。缺乏端粒酶的酿酒酵母细胞也会经历类似的过程,大多数细胞在大约 60 代后停止生长。在本研究中,我们证明衰老在很大程度上是可逆的。在生长停滞的细胞中重新激活端粒酶(EST2)的表达,导致细胞周期的恢复和衰老细胞特征的逆转。在衰老的单倍体细胞与端粒酶功能正常的细胞交配形成稳定的二倍体后,也观察到了挽救。尽管在 DNA 损伤检查点反应突变体(mec3 和/或 rad24 细胞)中,衰老可以被逆转,但在端粒酶重新激活后,重组缺陷的 rad52 突变体的存活率仍然很低。在挽救的 est2 细胞中,端粒长度最初是野生型细胞的一半,但在端粒酶存在的情况下,通过大约 70 代的繁殖,可以恢复到正常水平。这些结果限制了衰老的可能模型,并表明尽管大多数细胞经历了巨大的形态变化和短的切除端粒,但它们不会经历致命的 DNA 损伤,并且不会不可逆地走向死亡。

相似文献

1
Reversibility of replicative senescence in Saccharomyces cerevisiae: effect of homologous recombination and cell cycle checkpoints.
DNA Repair (Amst). 2012 Jan 2;11(1):35-45. doi: 10.1016/j.dnarep.2011.10.003. Epub 2011 Nov 9.
2
Mating type influences chromosome loss and replicative senescence in telomerase-deficient budding yeast by Dnl4-dependent telomere fusion.
Mol Microbiol. 2008 Sep;69(5):1246-54. doi: 10.1111/j.1365-2958.2008.06353.x. Epub 2008 Jul 4.
5
RPA provides checkpoint-independent cell cycle arrest and prevents recombination at uncapped telomeres of Saccharomyces cerevisiae.
DNA Repair (Amst). 2013 Mar 1;12(3):212-26. doi: 10.1016/j.dnarep.2012.12.002. Epub 2013 Jan 9.
6
Telomere cap components influence the rate of senescence in telomerase-deficient yeast cells.
Mol Cell Biol. 2004 Jan;24(2):837-45. doi: 10.1128/MCB.24.2.837-845.2004.
7
Telomere maintenance and survival in saccharomyces cerevisiae in the absence of telomerase and RAD52.
Genetics. 2009 Jul;182(3):671-84. doi: 10.1534/genetics.109.102939. Epub 2009 Apr 20.
8
Inhibition of the alternative lengthening of telomeres pathway by subtelomeric sequences in Saccharomyces cerevisiae.
DNA Repair (Amst). 2020 Dec;96:102996. doi: 10.1016/j.dnarep.2020.102996. Epub 2020 Oct 19.
9
Replication stress as a source of telomere recombination during replicative senescence in Saccharomyces cerevisiae.
FEMS Yeast Res. 2016 Nov;16(7). doi: 10.1093/femsyr/fow085. Epub 2016 Sep 27.

引用本文的文献

1
Deficiency in homologous recombination is associated with changes in cell cycling and morphology in Saccharomyces cerevisiae.
Exp Cell Res. 2023 Sep 1;430(1):113701. doi: 10.1016/j.yexcr.2023.113701. Epub 2023 Jun 30.
5
Genomic Instabilities, Cellular Senescence, and Aging: and Aging-Like Human Syndromes.
Front Med (Lausanne). 2018 Apr 17;5:104. doi: 10.3389/fmed.2018.00104. eCollection 2018.
6
Saccharomyces cerevisiae as a Model to Study Replicative Senescence Triggered by Telomere Shortening.
Front Oncol. 2013 Apr 26;3:101. doi: 10.3389/fonc.2013.00101. eCollection 2013.

本文引用的文献

1
Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice.
Nature. 2011 Jan 6;469(7328):102-6. doi: 10.1038/nature09603. Epub 2010 Nov 28.
2
Feedback between p21 and reactive oxygen production is necessary for cell senescence.
Mol Syst Biol. 2010;6:347. doi: 10.1038/msb.2010.5. Epub 2010 Feb 16.
3
Telomere length and cognitive function in community-dwelling elders: findings from the Health ABC Study.
Neurobiol Aging. 2011 Nov;32(11):2055-60. doi: 10.1016/j.neurobiolaging.2009.12.006. Epub 2009 Dec 23.
4
How telomeres solve the end-protection problem.
Science. 2009 Nov 13;326(5955):948-52. doi: 10.1126/science.1170633.
5
Evolution in health and medicine Sackler colloquium: Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians.
Proc Natl Acad Sci U S A. 2010 Jan 26;107 Suppl 1(Suppl 1):1710-7. doi: 10.1073/pnas.0906191106. Epub 2009 Nov 13.
6
Conservation of telomere protein complexes: shuffling through evolution.
Crit Rev Biochem Mol Biol. 2009 Nov-Dec;44(6):434-46. doi: 10.3109/10409230903307329.
7
Senescence and life span.
Pflugers Arch. 2010 Jan;459(2):291-9. doi: 10.1007/s00424-009-0723-6. Epub 2009 Sep 8.
8
The DNA damage response at eroded telomeres and tethering to the nuclear pore complex.
Nat Cell Biol. 2009 Aug;11(8):980-7. doi: 10.1038/ncb1910. Epub 2009 Jul 13.
9
Give me a break: how telomeres suppress the DNA damage response.
DNA Repair (Amst). 2009 Sep 2;8(9):1118-26. doi: 10.1016/j.dnarep.2009.04.013. Epub 2009 May 23.
10
A comparative analysis of the cell biology of senescence and aging.
Cell Mol Life Sci. 2009 Aug;66(15):2503-24. doi: 10.1007/s00018-009-0034-2. Epub 2009 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验