Schöner G
Center for Complex Systems, Florida Atlantic University, Boca Raton 33431.
Biol Cybern. 1990;63(4):257-70. doi: 10.1007/BF00203449.
The concepts of pattern dynamics and their adaptation through behavioral information, developed in the context of rhythmic movement coordination, are generalized to describe discrete movements of single components and the coordination of multiple components in discrete movement. In a first step we consider only one spatial component and study the temporal order inherent in discrete movement in terms of stable, reproducible space-time relationships. The coordination of discrete movement is captured in terms of relative timing. Using an exactly solvable nonlinear oscillator as a mathematical model, we show how the timing properties of discrete movement can be described by these pattern dynamics and discuss the relation of the pattern variables to observable end-effector movement. By coupling several such component dynamics in a fashion analogous to models of rhythmic movement coordination we capture the coordination of discrete movements of two components. We find the tendency to synchronize the component movements as the discrete analogon of in-phase locking and study its breakdown when the components become too different in their dynamic properties. The concept of temporal stability leads to the prediction that remote compensatory responses occur such as the restore synchronization when one component is perturbed. This prediction can be used to test the theory. We find that the discrete analogon to antiphase locking in rhythmic movement is a tendency to move sequentially, a finding that can also be subjected to empirical test.
在节律性运动协调的背景下发展起来的模式动力学概念及其通过行为信息的适应性,被推广用于描述单个组件的离散运动以及离散运动中多个组件的协调。第一步,我们仅考虑一个空间组件,并根据稳定、可重复的时空关系来研究离散运动中固有的时间顺序。离散运动的协调通过相对时间来体现。使用一个可精确求解的非线性振荡器作为数学模型,我们展示了离散运动的时间特性如何通过这些模式动力学来描述,并讨论了模式变量与可观测的末端执行器运动之间的关系。通过以类似于节律性运动协调模型的方式耦合几个这样的组件动力学,我们捕捉了两个组件离散运动的协调。我们发现组件运动同步的趋势作为同相锁定的离散类似物,并研究当组件在其动力学特性上变得过于不同时这种同步的破坏情况。时间稳定性的概念导致预测会出现远程补偿反应,例如当一个组件受到干扰时恢复同步。这个预测可用于检验该理论。我们发现节律性运动中反相锁定的离散类似物是一种顺序移动的趋势,这一发现也可以进行实证检验。