VIB Switch Laboratory, 3000 Leuven, Belgium.
Nucleic Acids Res. 2012 Jan;40(Database issue):D935-9. doi: 10.1093/nar/gkr996. Epub 2011 Nov 10.
Single nucleotide variants (SNVs) are, together with copy number variation, the primary source of variation in the human genome and are associated with phenotypic variation such as altered response to drug treatment and susceptibility to disease. Linking structural effects of non-synonymous SNVs to functional outcomes is a major issue in structural bioinformatics. The SNPeffect database (http://snpeffect.switchlab.org) uses sequence- and structure-based bioinformatics tools to predict the effect of protein-coding SNVs on the structural phenotype of proteins. It integrates aggregation prediction (TANGO), amyloid prediction (WALTZ), chaperone-binding prediction (LIMBO) and protein stability analysis (FoldX) for structural phenotyping. Additionally, SNPeffect holds information on affected catalytic sites and a number of post-translational modifications. The database contains all known human protein variants from UniProt, but users can now also submit custom protein variants for a SNPeffect analysis, including automated structure modeling. The new meta-analysis application allows plotting correlations between phenotypic features for a user-selected set of variants.
单核苷酸变异 (SNVs) 与拷贝数变异一起,是人类基因组变异的主要来源,与表型变异有关,如药物治疗反应的改变和疾病易感性。将非 synonymous SNVs 的结构效应与功能结果联系起来是结构生物信息学中的一个主要问题。SNPeffect 数据库 (http://snpeffect.switchlab.org) 使用基于序列和结构的生物信息学工具来预测蛋白质编码 SNVs 对蛋白质结构表型的影响。它集成了聚集预测 (TANGO)、淀粉样预测 (WALTZ)、伴侣蛋白结合预测 (LIMBO) 和蛋白质稳定性分析 (FoldX) 进行结构表型分析。此外,SNPeffect 还包含有关受影响的催化位点和一些翻译后修饰的信息。该数据库包含来自 UniProt 的所有已知人类蛋白质变体,但用户现在还可以提交自定义蛋白质变体进行 SNPeffect 分析,包括自动结构建模。新的元分析应用程序允许为用户选择的一组变体绘制表型特征之间的相关性。