Suppr超能文献

荧蒽、苯并[k]荧蒽及其衍生物的光学吸收和发射特性。DFT 研究。

Optical absorption and emission properties of fluoranthene, benzo[k]fluoranthene, and their derivatives. A DFT study.

机构信息

Department of Physics, Bharathiar University, Coimbatore, India-641 046.

出版信息

J Phys Chem A. 2011 Dec 29;115(51):14647-56. doi: 10.1021/jp208617s. Epub 2011 Dec 1.

Abstract

Fluoranthene and benzo[k]fluoranthene-based oligoarenes are good candidates for organic light-emitting diodes (OLEDs). In this work, the electronic structure and optical properties of fluoranthene, benzo[k]fluoranthene, and their derivatives have been studied using quantum chemical methods. The ground-state structures were optimized using the density functional theory (DFT) methods. The lowest singlet excited state was optimized using time-dependent density functional theory (TD-B3LYP) and configuration interaction singles (CIS) methods. On the basis of ground- and excited-state geometries, the absorption and emission spectra have been calculated using the TD-DFT method with a variety of exchange-correlation functionals. All the calculations were carried out in chloroform medium. The results show that the absorption and emission spectra calculated using the B3LYP functional is in good agreement with the available experimental results. Unlikely, the meta hybrid functionals such as M06HF and M062X underestimate the absorption and emission spectra of all the studied molecules. The calculated absorption and emission wavelength are more or less basis set independent. It has been observed that the substitution of an aromatic ring significantly alters the absorption and emission spectra.

摘要

荧蒽和苯并[k]荧蒽基寡芳烃是有机发光二极管(OLEDs)的良好候选材料。在这项工作中,使用量子化学方法研究了荧蒽、苯并[k]荧蒽及其衍生物的电子结构和光学性质。使用密度泛函理论(DFT)方法优化了基态结构。使用含时密度泛函理论(TD-B3LYP)和组态相互作用单重态(CIS)方法优化了最低单重激发态。基于基态和激发态几何形状,使用各种交换相关泛函的 TD-DFT 方法计算了吸收和发射光谱。所有计算均在氯仿介质中进行。结果表明,使用 B3LYP 泛函计算的吸收和发射光谱与可用的实验结果吻合良好。相反,M06HF 和 M062X 等杂化泛函低估了所有研究分子的吸收和发射光谱。计算的吸收和发射波长或多或少与基组无关。观察到芳环的取代显著改变了吸收和发射光谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验