College of Plant Science, Jilin University, Changchun 130062, China.
Mol Cells. 2011 Dec;32(6):579-87. doi: 10.1007/s10059-011-0186-4. Epub 2011 Nov 9.
Low temperature is one of the major environmental stresses in rice cultivation in high-altitude and high-latitude regions. In this study, we cultivated a set of recombinant inbred lines (RIL) derived from Dasanbyeo (indica) / TR22183 (japonica) crosses in Yanji (high-latitude area), Kunming (high-altitude area), Chuncheon (cold water irrigation) and Suwon (normal) to evaluate the main effects of quantitative trait loci (QTL) and epistatic QTL (E-QTL) with regard to their interactions with environments for cold-related traits. Six QTLs for spikelet fertility (SF) were identified in three cold treatment locations. Among them, four QTLs on chromosomes 2, 7, 8, and 10 were validated by several near isogenic lines (NILs) under cold treatment in Chuncheon. A total of 57 QTLs and 76 E-QTLs for nine cold-related traits were identified as distributing on all 12 chromosomes; among them, 19 QTLs and E-QTLs showed significant interactions of QTLs and environments (QEIs). The total phenotypic variation explained by each trait ranged from 13.2 to 29.1% in QTLs, 10.6 to 29.0% in EQTLs, 2.2 to 8.8% in QEIs and 1.0% to 7.7% in E-QTL × environment interactions (E-QEIs). These results demonstrate that epistatic effects and QEIs are important properties of QTL parameters for cold tolerance at the reproductive stage. In order to develop cold tolerant varieties adaptable to wide-ranges of cold stress, a strategy facilitating marker-assisted selection (MAS) is being adopted to accumulate QTLs identified from different environments.
低温是高寒和高海拔地区水稻种植的主要环境胁迫之一。本研究以籼稻品种 Dasanbyeo 和粳稻品种 TR22183 为亲本,在延吉(高纬度地区)、昆明(高海拔地区)、春川(冷水灌溉)和水原(正常)等 4 个地点种植重组自交系(RIL)群体,对与低温相关的性状进行主效 QTL 和上位性 QTL(E-QTL)分析,以及它们与环境的互作分析。在 3 个低温处理地点共鉴定到 6 个小穗育性(SF)QTL。其中,在春川冷水灌溉条件下,4 个位于第 2、7、8 和 10 染色体上的 QTL 被多个近等基因系(NIL)验证。共鉴定到与 9 个低温相关性状相关的 57 个 QTL 和 76 个 E-QTL,分布在所有 12 条染色体上;其中,19 个 QTL 和 E-QTL 表现出显著的 QTL 和环境互作(QEIs)。每个性状的表型总方差解释率在 QTL 中为 13.2%至 29.1%,在 E-QTL 中为 10.6%至 29.0%,在 QEIs 中为 2.2%至 8.8%,在 E-QTL×环境互作(E-QEIs)中为 1.0%至 7.7%。这些结果表明,上位性效应和 QEIs 是生殖阶段耐冷性 QTL 参数的重要特性。为了培育适应广泛低温胁迫的耐冷品种,采用了一种有助于积累来自不同环境的 QTL 的标记辅助选择(MAS)策略。