Suppr超能文献

证据表明,叶酸依赖性蛋白 YgfZ 和 MnmEG 对 MiaB 铁硫酶的生长和活性有相反的影响。

Evidence that the folate-dependent proteins YgfZ and MnmEG have opposing effects on growth and on activity of the iron-sulfur enzyme MiaB.

机构信息

Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida, USA.

出版信息

J Bacteriol. 2012 Jan;194(2):362-7. doi: 10.1128/JB.06226-11. Epub 2011 Nov 11.

Abstract

The folate-dependent protein YgfZ of Escherichia coli participates in the synthesis and repair of iron-sulfur (Fe-S) clusters; it belongs to a family of enzymes that use folate to capture formaldehyde units. Ablation of ygfZ is known to reduce growth, to increase sensitivity to oxidative stress, and to lower the activities of MiaB and other Fe-S enzymes. It has been reported that the growth phenotype can be suppressed by disrupting the tRNA modification gene mnmE. We first confirmed the latter observation using deletions in a simpler, more defined genetic background. We then showed that deleting mnmE substantially restores MiaB activity in ygfZ deletant cells and that overexpressing MnmE with its partner MnmG exacerbates the growth and MiaB activity phenotypes of the ygfZ deletant. MnmE, with MnmG, normally mediates a folate-dependent transfer of a formaldehyde unit to tRNA, and the MnmEG-mediated effects on the phenotypes of the ΔygfZ mutant apparently require folate, as evidenced by the effect of eliminating all folates by deleting folE. The expression of YgfZ was unaffected by deleting mnmE or overexpressing MnmEG or by folate status. Since formaldehyde transfer is a potential link between MnmEG and YgfZ, we inactivated formaldehyde detoxification by deleting frmA. This deletion had little effect on growth or MiaB activity in the ΔygfZ strain in the presence of formaldehyde, making it unlikely that formaldehyde alone connects the actions of MnmEG and YgfZ. A more plausible explanation is that MnmEG erroneously transfers a folate-bound formaldehyde unit to MiaB and that YgfZ reverses this.

摘要

大肠杆菌中依赖叶酸的蛋白 YgfZ 参与铁硫(Fe-S)簇的合成和修复;它属于一类使用叶酸捕获甲醛单位的酶。已知 ygfZ 的缺失会降低生长速度,增加对氧化应激的敏感性,并降低 MiaB 和其他 Fe-S 酶的活性。据报道,破坏 tRNA 修饰基因 mnmE 可以抑制生长表型。我们首先在更简单、更明确的遗传背景下使用缺失来证实后一种观察结果。然后我们表明,缺失 mnmE 可大大恢复 ygfZ 缺失细胞中的 MiaB 活性,并且过量表达 MnmE 及其伴侣 MnmG 会加剧 ygfZ 缺失细胞的生长和 MiaB 活性表型。MnmE 与 MnmG 通常介导叶酸依赖性甲醛单位向 tRNA 的转移,并且 MnmEG 对ΔygfZ 突变体表型的影响显然需要叶酸,这可以通过消除 folE 来消除所有叶酸来证明。MnmE 或过表达 MnmEG 或叶酸状态对 YgfZ 的表达没有影响。由于甲醛转移是 MnmEG 和 YgfZ 之间的潜在联系,我们通过缺失 frmA 使甲醛解毒失活。在存在甲醛的情况下,该缺失对ΔygfZ 菌株的生长或 MiaB 活性几乎没有影响,这使得甲醛本身不太可能连接 MnmEG 和 YgfZ 的作用。更合理的解释是,MnmEG 错误地将结合叶酸的甲醛单位转移到 MiaB 上,而 YgfZ 则逆转了这一过程。

相似文献

2
A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10412-7. doi: 10.1073/pnas.0911586107. Epub 2010 May 20.
3
Mutational analysis of YgfZ, a folate-dependent protein implicated in iron/sulphur cluster metabolism.
FEMS Microbiol Lett. 2012 Jan;326(2):168-72. doi: 10.1111/j.1574-6968.2011.02448.x. Epub 2011 Nov 18.
5
Enzymology of tRNA modification in the bacterial MnmEG pathway.
Biochimie. 2012 Jul;94(7):1510-20. doi: 10.1016/j.biochi.2012.02.019. Epub 2012 Feb 28.
8
9
SAXS analysis of the tRNA-modifying enzyme complex MnmE/MnmG reveals a novel interaction mode and GTP-induced oligomerization.
Nucleic Acids Res. 2014 May;42(9):5978-92. doi: 10.1093/nar/gku213. Epub 2014 Mar 14.

引用本文的文献

1
A Chemoproteomic Approach to Monitor Native Iron-Sulfur Cluster Binding.
Methods Mol Biol. 2024;2839:261-289. doi: 10.1007/978-1-0716-4043-2_16.
2
tRNA modification profiling reveals epitranscriptome regulatory networks in .
bioRxiv. 2024 Jul 2:2024.07.01.601603. doi: 10.1101/2024.07.01.601603.
4
One-carbon metabolism, folate, zinc and translation.
Microb Biotechnol. 2020 Jul;13(4):899-925. doi: 10.1111/1751-7915.13550. Epub 2020 Mar 9.
5
Toward a better understanding of folate metabolism in health and disease.
J Exp Med. 2019 Feb 4;216(2):253-266. doi: 10.1084/jem.20181965. Epub 2018 Dec 26.
6
Effects of Heterologous tRNA Modifications on the Production of Proteins Containing Noncanonical Amino Acids.
Bioengineering (Basel). 2018 Feb 2;5(1):11. doi: 10.3390/bioengineering5010011.
7
General and condition-specific essential functions of Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5189-94. doi: 10.1073/pnas.1422186112. Epub 2015 Apr 6.

本文引用的文献

1
2
Synergistic metabolism of a broad range of C1 compounds in the marine methylotrophic bacterium HTCC2181.
Environ Microbiol. 2012 Mar;14(3):630-40. doi: 10.1111/j.1462-2920.2011.02605.x. Epub 2011 Oct 9.
3
Phenotypic landscape of a bacterial cell.
Cell. 2011 Jan 7;144(1):143-56. doi: 10.1016/j.cell.2010.11.052. Epub 2010 Dec 23.
4
A role of ygfZ in the Escherichia coli response to plumbagin challenge.
J Biomed Sci. 2010 Nov 9;17(1):84. doi: 10.1186/1423-0127-17-84.
5
A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10412-7. doi: 10.1073/pnas.0911586107. Epub 2010 May 20.
7
Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis.
Cell Metab. 2009 Aug;10(2):119-30. doi: 10.1016/j.cmet.2009.06.012.
8
L: -2-Hydroxyglutaric aciduria, a disorder of metabolite repair.
J Inherit Metab Dis. 2009 Apr;32(2):135-42. doi: 10.1007/s10545-008-1042-3. Epub 2008 Nov 21.
9
Biosynthesis of 7-deazaguanosine-modified tRNA nucleosides: a new role for GTP cyclohydrolase I.
J Bacteriol. 2008 Dec;190(24):7876-84. doi: 10.1128/JB.00874-08. Epub 2008 Oct 17.
10
Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases.
Annu Rev Biochem. 2008;77:669-700. doi: 10.1146/annurev.biochem.76.052705.162653.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验