School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
J Am Chem Soc. 2012 Jan 11;134(1):280-92. doi: 10.1021/ja206639d. Epub 2011 Dec 12.
Functional interfaces of biomolecules and inorganic substrates like semiconductor materials are of utmost importance for the development of highly sensitive biosensors and microarray technology. However, there is still a lot of room for improving the techniques for immobilization of biomolecules, in particular nucleic acids and proteins. Conventional anchoring strategies rely on attaching biomacromolecules via complementary functional groups, appropriate bifunctional linker molecules, or non-covalent immobilization via electrostatic interactions. In this work, we demonstrate a facile, new, and general method for the reversible non-covalent attachment of amphiphilic DNA probes containing hydrophobic units attached to the nucleobases (lipid-DNA) onto SAM-modified gold electrodes, silicon semiconductor surfaces, and glass substrates. We show the anchoring of well-defined amounts of lipid-DNA onto the surface by insertion of their lipid tails into the hydrophobic monolayer structure. The surface coverage of DNA molecules can be conveniently controlled by modulating the initial concentration and incubation time. Further control over the DNA layer is afforded by the additional external stimulus of temperature. Heating the DNA-modified surfaces at temperatures >80 °C leads to the release of the lipid-DNA structures from the surface without harming the integrity of the hydrophobic SAMs. These supramolecular DNA layers can be further tuned by anchoring onto a mixed SAM containing hydrophobic molecules of different lengths, rather than a homogeneous SAM. Immobilization of lipid-DNA on such SAMs has revealed that the surface density of DNA probes is highly dependent on the composition of the surface layer and the structure of the lipid-DNA. The formation of the lipid-DNA sensing layers was monitored and characterized by numerous techniques including X-ray photoelectron spectroscopy, quartz crystal microbalance, ellipsometry, contact angle measurements, atomic force microscopy, and confocal fluorescence imaging. Finally, this new DNA modification strategy was applied for the sensing of target DNAs using silicon-nanowire field-effect transistor device arrays, showing a high degree of specificity toward the complementary DNA target, as well as single-base mismatch selectivity.
生物分子和无机基质(如半导体材料)的功能界面对于开发高灵敏度的生物传感器和微阵列技术至关重要。然而,在固定生物分子(特别是核酸和蛋白质)方面,仍有很大的改进空间。传统的固定化策略依赖于通过互补官能团、适当的双功能连接分子或通过静电相互作用进行非共价固定化来附着生物大分子。在这项工作中,我们展示了一种简便、新颖且通用的方法,用于将含有连接到碱基上的疏水性单元的两亲性 DNA 探针(脂质-DNA)可逆非共价地附着到 SAM 修饰的金电极、硅半导体表面和玻璃基底上。我们通过将其脂质尾部插入疏水性单层结构来展示脂质-DNA 在表面上的定量固定。通过调节初始浓度和孵育时间,可以方便地控制 DNA 分子的表面覆盖率。通过额外的外部温度刺激,可以进一步控制 DNA 层。将 DNA 修饰表面加热至 >80°C 的温度会导致脂质-DNA 结构从表面释放,而不会破坏疏水性 SAM 的完整性。这些超分子 DNA 层可以通过锚定到含有不同长度疏水分子的混合 SAM 进一步调整,而不是均一的 SAM。将脂质-DNA 固定在这种 SAM 上表明,DNA 探针的表面密度高度依赖于表面层的组成和脂质-DNA 的结构。通过多种技术监测和表征了脂质-DNA 传感层的形成,包括 X 射线光电子能谱、石英晶体微天平、椭圆光度法、接触角测量、原子力显微镜和共聚焦荧光成像。最后,这种新的 DNA 修饰策略应用于使用硅纳米线场效应晶体管器件阵列检测靶 DNA,表现出对互补 DNA 靶标高度的特异性,以及单碱基错配选择性。