Suppr超能文献

将多个弛豫、幂律衰减和分数波方程关联起来。

Linking multiple relaxation, power-law attenuation, and fractional wave equations.

机构信息

Department of Informatics, University of Oslo, P.O. Box 1080, NO-0316 Oslo, Norway.

出版信息

J Acoust Soc Am. 2011 Nov;130(5):3038-45. doi: 10.1121/1.3641457.

Abstract

The acoustic wave attenuation is described by an experimentally established frequency power law in a variety of complex media, e.g., biological tissue, polymers, rocks, and rubber. Recent papers present a variety of acoustical fractional derivative wave equations that have the ability to model power-law attenuation. On the other hand, a multiple relaxation model is widely recognized as a physically based description of the acoustic loss mechanisms as developed by Nachman et al. [J. Acoust. Soc. Am. 88, 1584-1595 (1990)]. Through assumption of a continuum of relaxation mechanisms, each with an effective compressibility described by a distribution related to the Mittag-Leffler function, this paper shows that the wave equation corresponding to the multiple relaxation approach is identical to a given fractional derivative wave equation. This work therefore provides a physically based motivation for use of fractional wave equations in acoustic modeling.

摘要

声波衰减可以通过在各种复杂介质(例如生物组织、聚合物、岩石和橡胶)中建立的经验频率幂律来描述。最近的一些论文提出了各种声学分数阶导数波动方程,这些方程具有模拟幂律衰减的能力。另一方面,多重弛豫模型被广泛认为是 Nachman 等人提出的声学损耗机制的物理基础描述[J. Acoust. Soc. Am. 88, 1584-1595 (1990)]。通过假设连续的弛豫机制,每个机制的有效可压缩性都由与 Mittag-Leffler 函数相关的分布来描述,本文表明,与多重弛豫方法对应的波动方程与给定的分数阶导数波动方程相同。因此,这项工作为在声学建模中使用分数阶波动方程提供了物理基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验