Suppr超能文献

UV-B 信号在玉米中的作用:不同辐射时间的转录组学和代谢组学研究。

UV-B signaling in maize: transcriptomic and metabolomic studies at different irradiation times.

机构信息

Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.

出版信息

Plant Signal Behav. 2011 Dec;6(12):1926-31. doi: 10.4161/psb.6.12.18164.

Abstract

Plants have evolved adaptations to environmental factors, including UV-B present in solar radiation. Deployment of specific adaptive phenotypes to avoid or repair UV-B damage requires physiological and developmental acclimation to variable UV-B fluence. To gain a better understanding of the events in UV-B acclimation, we have analyzed a 5min to 6h time course of transcriptome and metabolome responses in irradiated and shielded leaves and in immature maize ears to unravel the systemic physiological and developmental responses in exposed and shielded organs. Within 10 min of UV-B exposure, transcripts are changed not only in irradiated leaves, but also in shielded tissues. The number of UV-B-regulated transcripts rapidly increases with exposure length. Interestingly, after 10 min of exposure, the overlap in transcriptome changes in irradiated and shielded organs is significant; while, after 6h of UV-B, most transcripts are specific for each tissue under study. We suggest that early events in all tissues may be elicited by common signaling pathways, while at longer exposure times responses become more organ-specific. Our working hypothesis is that mobile signaling molecules are generated in irradiated organs to elicit the initial responses. We found several metabolites that rapidly change after different treatments during the timecourse; myoinositol is one candidate metabolite based on its rapid modulation in all organs. There is also support from RNA profiling: after 1h UV-B, transcripts for myoinositol-1-phosphate synthase are decreased in both irradiated and shielded leaves suggesting downregulation of biogenesis.

摘要

植物已经进化出适应环境因素的能力,包括太阳辐射中的 UV-B。为了避免或修复 UV-B 损伤,植物需要特定的适应性表型来部署,这需要对可变的 UV-B 辐射量进行生理和发育适应。为了更好地理解 UV-B 适应过程中的事件,我们分析了照射和遮蔽叶片以及未成熟玉米穗在 5 分钟至 6 小时时间范围内的转录组和代谢组响应,以揭示暴露和遮蔽器官中的系统生理和发育响应。在暴露于 UV-B 的 10 分钟内,不仅在照射叶片中,而且在遮蔽组织中,转录本也发生了变化。随着暴露长度的增加,UV-B 调节的转录本数量迅速增加。有趣的是,在暴露 10 分钟后,照射和遮蔽器官中转录组变化的重叠非常显著;然而,在 6 小时的 UV-B 后,大多数转录本是每个研究组织特有的。我们认为,所有组织中的早期事件可能是由共同的信号通路引起的,而在较长的暴露时间内,反应变得更加组织特异性。我们的工作假设是,在照射器官中产生移动的信号分子,以引发初始反应。我们发现,在时间过程中,不同处理后有几种代谢物迅速变化;基于其在所有器官中的快速调节,肌醇是候选代谢物之一。RNA 分析也提供了支持:在 1 小时的 UV-B 后,照射和遮蔽叶片中的肌醇-1-磷酸合酶的转录本减少,表明生物发生的下调。

相似文献

1
UV-B signaling in maize: transcriptomic and metabolomic studies at different irradiation times.
Plant Signal Behav. 2011 Dec;6(12):1926-31. doi: 10.4161/psb.6.12.18164.
2
Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize.
BMC Genomics. 2011 Jun 16;12:321. doi: 10.1186/1471-2164-12-321.
3
Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues.
Genome Biol. 2004;5(3):R16. doi: 10.1186/gb-2004-5-3-r16. Epub 2004 Mar 1.
4
Rapid Maize Leaf and Immature Ear Responses to UV-B Radiation.
Front Plant Sci. 2011 Jul 25;2:33. doi: 10.3389/fpls.2011.00033. eCollection 2011.
5
6
Analysis of leaf proteome after UV-B irradiation in maize lines differing in sensitivity.
Mol Cell Proteomics. 2005 Nov;4(11):1673-85. doi: 10.1074/mcp.M500173-MCP200. Epub 2005 Jul 25.
7
UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels.
Plant Physiol. 2017 Jun;174(2):1110-1126. doi: 10.1104/pp.17.00365. Epub 2017 Apr 11.
9
Extrapolation of significant genes and transcriptional regulatory networks involved in Zea mays in response in UV-B stress.
Genes Genomics. 2018 Sep;40(9):973-990. doi: 10.1007/s13258-018-0705-1. Epub 2018 May 31.

引用本文的文献

2
Odyssey of environmental and microbial interventions in maize crop improvement.
Front Plant Sci. 2025 Jan 9;15:1428475. doi: 10.3389/fpls.2024.1428475. eCollection 2024.
3
Transcriptomic Profiling of Soybean in Response to High-Intensity UV-B Irradiation Reveals Stress Defense Signaling.
Front Plant Sci. 2016 Dec 19;7:1917. doi: 10.3389/fpls.2016.01917. eCollection 2016.
4
Plant transcriptomics and responses to environmental stress: an overview.
J Genet. 2015 Sep;94(3):525-37. doi: 10.1007/s12041-015-0545-6.
6
Footprints of the sun: memory of UV and light stress in plants.
Front Plant Sci. 2014 Sep 16;5:474. doi: 10.3389/fpls.2014.00474. eCollection 2014.

本文引用的文献

1
Rapid Maize Leaf and Immature Ear Responses to UV-B Radiation.
Front Plant Sci. 2011 Jul 25;2:33. doi: 10.3389/fpls.2011.00033. eCollection 2011.
2
Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize.
BMC Genomics. 2011 Jun 16;12:321. doi: 10.1186/1471-2164-12-321.
3
Perception of UV-B by the Arabidopsis UVR8 protein.
Science. 2011 Apr 1;332(6025):103-6. doi: 10.1126/science.1200660.
4
Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20132-7. doi: 10.1073/pnas.0914532107. Epub 2010 Nov 1.
5
Crosstalks between myo-inositol metabolism, programmed cell death and basal immunity in Arabidopsis.
PLoS One. 2009 Oct 8;4(10):e7364. doi: 10.1371/journal.pone.0007364.
6
Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis.
EMBO J. 2009 Mar 4;28(5):591-601. doi: 10.1038/emboj.2009.4. Epub 2009 Jan 22.
7
CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis.
Plant Cell. 2006 Aug;18(8):1975-90. doi: 10.1105/tpc.105.040097. Epub 2006 Jul 7.
9
A UV-B-specific signaling component orchestrates plant UV protection.
Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18225-30. doi: 10.1073/pnas.0507187102. Epub 2005 Dec 5.
10
Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues.
Genome Biol. 2004;5(3):R16. doi: 10.1186/gb-2004-5-3-r16. Epub 2004 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验