Suppr超能文献

用于自动化纳米医学的 siRNA 功能化 RNA 纳米颗粒的设计和自组装。

Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine.

机构信息

Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California, USA.

出版信息

Nat Protoc. 2011 Dec 1;6(12):2022-34. doi: 10.1038/nprot.2011.418.

Abstract

Individual genes can be targeted with siRNAs. The use of nucleic acid nanoparticles (NPs) is a convenient method for delivering combinations of specific siRNAs in an organized and programmable manner. We present three assembly protocols to produce two different types of RNA self-assembling functional NPs using processes that are fully automatable. These NPs are engineered based on two complementary nanoscaffold designs (nanoring and nanocube), which serve as carriers of multiple siRNAs. The NPs are functionalized by the extension of up to six scaffold strands with siRNA duplexes. The assembly protocols yield functionalized RNA NPs, and we show that they interact in vitro with human recombinant Dicer to produce siRNAs. Our design strategies allow for fast, economical and easily controlled production of endotoxin-free therapeutic RNA NPs that are suitable for preclinical development.

摘要

可以使用 siRNA 靶向单个基因。核酸纳米颗粒 (NPs) 的使用是一种方便的方法,可以有组织、可编程地递呈特定 siRNA 的组合。我们提出了三种组装方案,使用完全自动化的过程来生产两种不同类型的 RNA 自组装功能 NPs。这些 NPs 是基于两种互补的纳米支架设计(纳米环和纳米立方)构建的,作为多个 siRNA 的载体。NPs 通过最多六个支架链的延伸来功能化,与 siRNA 双链体。组装方案产生功能化的 RNA NPs,我们表明它们在体外与人重组 Dicer 相互作用产生 siRNA。我们的设计策略允许快速、经济且易于控制地生产无内毒素的治疗性 RNA NPs,适用于临床前开发。

相似文献

2
Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing.
Nat Biotechnol. 2003 Mar;21(3):324-8. doi: 10.1038/nbt792. Epub 2003 Feb 18.
3
Milligram scale production of potent recombinant small interfering RNAs in Escherichia coli.
Biotechnol Bioeng. 2018 Sep;115(9):2280-2291. doi: 10.1002/bit.26740. Epub 2018 Jun 25.
4
Rational design and in vitro and in vivo delivery of Dicer substrate siRNA.
Nat Protoc. 2006;1(2):508-17. doi: 10.1038/nprot.2006.72.
5
Quantification of siRNA Duplexes Bound to Gold Nanoparticle Surfaces.
Methods Mol Biol. 2017;1570:1-15. doi: 10.1007/978-1-4939-6840-4_1.
6
The effector mechanism of siRNA spherical nucleic acids.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1312-1320. doi: 10.1073/pnas.1915907117. Epub 2020 Jan 3.
7
Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.
J Mol Biol. 2011 Apr 29;408(2):262-76. doi: 10.1016/j.jmb.2011.02.038. Epub 2011 Feb 24.
10
Self-Assembling RNA Nanoparticle for Gene Expression Regulation in a Model System.
ACS Synth Biol. 2019 Mar 15;8(3):491-497. doi: 10.1021/acssynbio.8b00319. Epub 2019 Feb 11.

引用本文的文献

1
Transforming Cancer Nanotechnology Data Analysis and User Experience. Part I: Current Challenges and Solutions Provided by caNanoLab.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Jul-Aug;17(4):e70030. doi: 10.1002/wnan.70030.
4
Small-Angle X-ray Scattering (SAXS) Combined with SAXS-Driven Molecular Dynamics for Structural Analysis of Multistranded RNA Assemblies.
ACS Appl Mater Interfaces. 2024 Dec 11;16(49):67178-67191. doi: 10.1021/acsami.4c12397. Epub 2024 Nov 26.
7
Synthesis of Mesoporous Silica Nanoparticles for the Delivery of Nucleic Acid Nanostructures.
Methods Mol Biol. 2023;2709:205-210. doi: 10.1007/978-1-0716-3417-2_13.
8
Structural Characterization of Nucleic Acid Nanoparticles Using SAXS and SAXS-Driven MD.
Methods Mol Biol. 2023;2709:65-94. doi: 10.1007/978-1-0716-3417-2_4.
10
RNA origami: design, simulation and application.
RNA Biol. 2023 Jan;20(1):510-524. doi: 10.1080/15476286.2023.2237719.

本文引用的文献

1
Multistrand RNA secondary structure prediction and nanostructure design including pseudoknots.
ACS Nano. 2011 Dec 27;5(12):9542-51. doi: 10.1021/nn202666w. Epub 2011 Nov 17.
3
Branched RNA nanostructures for RNA interference.
Chem Commun (Camb). 2011 Aug 7;47(29):8367-9. doi: 10.1039/c1cc11780g. Epub 2011 Jun 21.
4
A boost for the emerging field of RNA nanotechnology.
ACS Nano. 2011 May 24;5(5):3405-18. doi: 10.1021/nn200989r.
5
Molecular strategies to design an escape-proof antiviral therapy.
Antiviral Res. 2011 Oct;92(1):7-14. doi: 10.1016/j.antiviral.2011.04.002. Epub 2011 Apr 12.
6
Self-assembling RNA square.
Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6405-8. doi: 10.1073/pnas.1017999108. Epub 2011 Apr 4.
7
8
Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes.
Nano Lett. 2011 Feb 9;11(2):878-87. doi: 10.1021/nl104271s. Epub 2011 Jan 13.
10
Use of RNA structure flexibility data in nanostructure modeling.
Methods. 2011 Jun;54(2):239-50. doi: 10.1016/j.ymeth.2010.12.010. Epub 2010 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验