Suppr超能文献

最优多阶段设计在随机临床试验中的连续结局。

Optimal multistage designs for randomised clinical trials with continuous outcomes.

机构信息

Hub for Trials Methodology Research, MRC Biostatistics Unit, Cambridge, UK.

出版信息

Stat Med. 2012 Feb 20;31(4):301-12. doi: 10.1002/sim.4421. Epub 2011 Dec 5.

Abstract

Multistage designs allow considerable reductions in the expected sample size of a trial. When stopping for futility or efficacy is allowed at each stage, the expected sample size under different possible true treatment effects (δ) is of interest. The δ-minimax design is the one for which the maximum expected sample size is minimised amongst all designs that meet the types I and II error constraints. Previous work has compared a two-stage δ-minimax design with other optimal two-stage designs. Applying the δ-minimax design to designs with more than two stages was not previously considered because of computational issues. In this paper, we identify the δ-minimax designs with more than two stages through use of a novel application of simulated annealing. We compare them with other optimal multistage designs and the triangular design. We show that, as for two-stage designs, the δ-minimax design has good expected sample size properties across a broad range of treatment effects but generally has a higher maximum sample size. To overcome this drawback, we use the concept of admissible designs to find trials which balance the maximum expected sample size and maximum sample size. We show that such designs have good expected sample size properties and a reasonable maximum sample size and, thus, are very appealing for use in clinical trials.

摘要

多阶段设计允许在试验中大幅减少预期的样本量。当每个阶段都允许因无效或有效而停止时,不同可能的真实治疗效果(δ)下的预期样本量就很有意义。在满足 I 型和 II 型错误约束的所有设计中,δ-最小最大设计是使最大预期样本量最小化的设计。先前的工作已经比较了两阶段 δ-最小最大设计与其他最佳两阶段设计。由于计算问题,以前没有将 δ-最小最大设计应用于超过两阶段的设计。在本文中,我们通过模拟退火的新应用来确定超过两阶段的 δ-最小最大设计。我们将它们与其他最佳多阶段设计和三角设计进行比较。我们表明,与两阶段设计一样,δ-最小最大设计在广泛的治疗效果范围内具有良好的预期样本量特性,但通常具有更高的最大样本量。为了克服这一缺点,我们使用可接受设计的概念来找到平衡最大预期样本量和最大样本量的试验。我们表明,这些设计具有良好的预期样本量特性和合理的最大样本量,因此非常适合用于临床试验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验