Berlin NeuroImaging Center, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
Neuroimage. 2012 Feb 15;59(4):3201-11. doi: 10.1016/j.neuroimage.2011.11.062. Epub 2011 Dec 1.
Topographic non-invasive near infrared spectroscopy (NIRS) has become a well-established tool for functional brain imaging. Applying up to 100 optodes over the head of a subject, allows achieving a spatial resolution in the centimeter range. This resolution is poor compared to other functional imaging tools. However, recently it was shown that diffuse optical tomography (DOT) as an extension of NIRS based on high-density (HD) probe arrays and supplemented by an advanced image reconstruction procedure allows describing activation patterns with a spatial resolution in the millimeter range. Building on these findings, we hypothesize that HD-DOT may render very focal activations accessible which would be missed by the traditionally used sparse arrays. We examined activation patterns in the primary somatosensory cortex, since its somatotopic organization is very fine-grained. We performed a vibrotactile stimulation study of the first and fifth finger in eight human subjects, using a 900-channel continuous-wave DOT imaging system for achieving a higher resolution than conventional topographic NIRS. To compare the results to a well-established high-resolution imaging technique, the same paradigm was investigated in the same subjects by means of functional magnetic resonance imaging (fMRI). In this work, we tested the advantage of ultrahigh-density probe arrays and show that highly focal activations would be missed by classical next-nearest neighbor NIRS approach, but also by DOT, when using a sparse probe array. Distinct activation patterns for both fingers correlated well with the expected neuroanatomy in five of eight subjects. Additionally we show that activation for different fingers is projected to different tissue depths in the DOT image. Comparison to the fMRI data yielded similar activation foci in seven out of ten finger representations in these five subjects when comparing the lateral localization of DOT and fMRI results.
基于高密度(HD)探头阵列的近红外光谱扩散光学断层成像(DOT)是对传统近红外光谱的延伸,并辅以先进的图像重建程序,可在毫米级的空间分辨率上描述激活模式。与其他功能成像工具相比,这种分辨率较差。然而,最近的研究表明,与其他功能成像工具相比,这种分辨率较差。然而,最近的研究表明,基于高密度(HD)探头阵列的近红外光谱扩散光学断层成像(DOT)是对传统近红外光谱的延伸,并辅以先进的图像重建程序,可在毫米级的空间分辨率上描述激活模式。基于这些发现,我们假设高密度-DOT 可能会发现传统稀疏阵列错过的非常聚焦的激活。我们检查了初级体感皮层的激活模式,因为它的体感组织非常精细。我们在 8 名人类受试者中进行了一次基于振动刺激的第一和第五指研究,使用 900 通道连续波 DOT 成像系统以获得比传统拓扑近红外光谱更高的分辨率。为了将结果与成熟的高分辨率成像技术进行比较,我们在相同的受试者中通过功能磁共振成像(fMRI)研究了相同的范式。在这项工作中,我们测试了超高密度探头阵列的优势,并表明传统的最近邻近红外光谱方法和稀疏探头阵列的 DOT 都会错过高度聚焦的激活。对于这两个手指的激活模式与 8 名受试者中的 5 名的预期神经解剖结构非常吻合。此外,我们还表明,在 DOT 图像中,不同手指的激活被投射到不同的组织深度。当比较 DOT 和 fMRI 数据时,在这 5 名受试者中的 10 个手指代表中的 7 个中, lateral 定位的 DOT 和 fMRI 结果产生了相似的激活焦点。