Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA.
Bioinformatics. 2012 Feb 15;28(4):564-72. doi: 10.1093/bioinformatics/btr675. Epub 2011 Dec 6.
Peptide detection is a crucial step in mass spectrometry (MS) based proteomics. Most existing algorithms are based upon greedy isotope template matching and thus may be prone to error propagation and ineffective to detect overlapping peptides. In addition, existing algorithms usually work at different charge states separately, isolating useful information that can be drawn from other charge states, which may lead to poor detection of low abundance peptides.
BPDA2d models spectra as a mixture of candidate peptide signals and systematically evaluates all possible combinations of possible peptide candidates to interpret the given spectra. For each candidate, BPDA2d takes into account its elution profile, charge state distribution and isotope pattern, and it combines all evidence to infer the candidate's signal and existence probability. By piecing all evidence together--especially by deriving information across charge states--low abundance peptides can be better identified and peptide detection rates can be improved. Instead of local template matching, BPDA2d performs global optimization for all candidates and systematically optimizes their signals. Since BPDA2d looks for the optimal among all possible interpretations of the given spectra, it has the capability in handling complex spectra where features overlap. BPDA2d estimates the posterior existence probability of detected peptides, which can be directly used for probability-based evaluation in subsequent processing steps. Our experiments indicate that BPDA2d outperforms state-of-the-art detection methods on both simulated data and real liquid chromatography-mass spectrometry data, according to sensitivity and detection accuracy.
The BPDA2d software package is available at http://gsp.tamu.edu/Publications/supplementary/sun11a/.
肽检测是基于质谱(MS)的蛋白质组学中的关键步骤。大多数现有的算法都是基于贪婪的同位素模板匹配,因此可能容易出现错误传播,并且无法有效检测重叠肽。此外,现有的算法通常分别在不同的电荷状态下工作,隔离了可以从其他电荷状态中提取的有用信息,这可能导致低丰度肽的检测效果不佳。
BPDA2d 将光谱建模为候选肽信号的混合物,并系统地评估可能的肽候选物的所有可能组合,以解释给定的光谱。对于每个候选物,BPDA2d 考虑其洗脱轮廓、电荷状态分布和同位素模式,并结合所有证据来推断候选物的信号和存在概率。通过将所有证据拼接在一起——特别是通过跨电荷状态推导出信息——可以更好地识别低丰度肽,并提高肽检测率。BPDA2d 不是执行局部模板匹配,而是对所有候选物执行全局优化,并系统地优化它们的信号。由于 BPDA2d 寻找给定光谱的所有可能解释中的最佳解释,因此它具有处理特征重叠的复杂光谱的能力。BPDA2d 估计检测到的肽的后验存在概率,该概率可直接用于后续处理步骤中的基于概率的评估。根据灵敏度和检测准确性,我们的实验表明,BPDA2d 在模拟数据和真实液相色谱-质谱数据上均优于最先进的检测方法。
BPDA2d 软件包可在 http://gsp.tamu.edu/Publications/supplementary/sun11a/ 获得。