Suppr超能文献

BPDA2d--一种基于二维全局优化的贝叶斯肽段检测算法,用于液相色谱-质谱联用。

BPDA2d--a 2D global optimization-based Bayesian peptide detection algorithm for liquid chromatograph-mass spectrometry.

机构信息

Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA.

出版信息

Bioinformatics. 2012 Feb 15;28(4):564-72. doi: 10.1093/bioinformatics/btr675. Epub 2011 Dec 6.

Abstract

MOTIVATION

Peptide detection is a crucial step in mass spectrometry (MS) based proteomics. Most existing algorithms are based upon greedy isotope template matching and thus may be prone to error propagation and ineffective to detect overlapping peptides. In addition, existing algorithms usually work at different charge states separately, isolating useful information that can be drawn from other charge states, which may lead to poor detection of low abundance peptides.

RESULTS

BPDA2d models spectra as a mixture of candidate peptide signals and systematically evaluates all possible combinations of possible peptide candidates to interpret the given spectra. For each candidate, BPDA2d takes into account its elution profile, charge state distribution and isotope pattern, and it combines all evidence to infer the candidate's signal and existence probability. By piecing all evidence together--especially by deriving information across charge states--low abundance peptides can be better identified and peptide detection rates can be improved. Instead of local template matching, BPDA2d performs global optimization for all candidates and systematically optimizes their signals. Since BPDA2d looks for the optimal among all possible interpretations of the given spectra, it has the capability in handling complex spectra where features overlap. BPDA2d estimates the posterior existence probability of detected peptides, which can be directly used for probability-based evaluation in subsequent processing steps. Our experiments indicate that BPDA2d outperforms state-of-the-art detection methods on both simulated data and real liquid chromatography-mass spectrometry data, according to sensitivity and detection accuracy.

AVAILABILITY

The BPDA2d software package is available at http://gsp.tamu.edu/Publications/supplementary/sun11a/.

摘要

动机

肽检测是基于质谱(MS)的蛋白质组学中的关键步骤。大多数现有的算法都是基于贪婪的同位素模板匹配,因此可能容易出现错误传播,并且无法有效检测重叠肽。此外,现有的算法通常分别在不同的电荷状态下工作,隔离了可以从其他电荷状态中提取的有用信息,这可能导致低丰度肽的检测效果不佳。

结果

BPDA2d 将光谱建模为候选肽信号的混合物,并系统地评估可能的肽候选物的所有可能组合,以解释给定的光谱。对于每个候选物,BPDA2d 考虑其洗脱轮廓、电荷状态分布和同位素模式,并结合所有证据来推断候选物的信号和存在概率。通过将所有证据拼接在一起——特别是通过跨电荷状态推导出信息——可以更好地识别低丰度肽,并提高肽检测率。BPDA2d 不是执行局部模板匹配,而是对所有候选物执行全局优化,并系统地优化它们的信号。由于 BPDA2d 寻找给定光谱的所有可能解释中的最佳解释,因此它具有处理特征重叠的复杂光谱的能力。BPDA2d 估计检测到的肽的后验存在概率,该概率可直接用于后续处理步骤中的基于概率的评估。根据灵敏度和检测准确性,我们的实验表明,BPDA2d 在模拟数据和真实液相色谱-质谱数据上均优于最先进的检测方法。

可用性

BPDA2d 软件包可在 http://gsp.tamu.edu/Publications/supplementary/sun11a/ 获得。

相似文献

1
BPDA2d--a 2D global optimization-based Bayesian peptide detection algorithm for liquid chromatograph-mass spectrometry.
Bioinformatics. 2012 Feb 15;28(4):564-72. doi: 10.1093/bioinformatics/btr675. Epub 2011 Dec 6.
2
BPDA - a Bayesian peptide detection algorithm for mass spectrometry.
BMC Bioinformatics. 2010 Sep 29;11:490. doi: 10.1186/1471-2105-11-490.
3
MultiAlign: a multiple LC-MS analysis tool for targeted omics analysis.
BMC Bioinformatics. 2013 Feb 12;14:49. doi: 10.1186/1471-2105-14-49.
4
Improving mass and liquid chromatography based identification of proteins using bayesian scoring.
J Proteome Res. 2005 Nov-Dec;4(6):2174-84. doi: 10.1021/pr050251c.
5
Targeted Feature Detection for Data-Dependent Shotgun Proteomics.
J Proteome Res. 2017 Aug 4;16(8):2964-2974. doi: 10.1021/acs.jproteome.7b00248. Epub 2017 Jul 19.
6
Identification of peptide features in precursor spectra using Hardklör and Krönik.
Curr Protoc Bioinformatics. 2012 Mar;Chapter 13:Unit13.18. doi: 10.1002/0471250953.bi1318s37.
7
LC-MSsim--a simulation software for liquid chromatography mass spectrometry data.
BMC Bioinformatics. 2008 Oct 8;9:423. doi: 10.1186/1471-2105-9-423.
10
Enhanced peptide quantification using spectral count clustering and cluster abundance.
BMC Bioinformatics. 2011 Oct 28;12:423. doi: 10.1186/1471-2105-12-423.

引用本文的文献

1
Bayesian Normalization Model for Label-Free Quantitative Analysis by LC-MS.
IEEE/ACM Trans Comput Biol Bioinform. 2015 Jul-Aug;12(4):914-27. doi: 10.1109/TCBB.2014.2377723.
2
Accurate LC peak boundary detection for ¹⁶O/¹⁸O labeled LC-MS data.
PLoS One. 2013 Oct 7;8(10):e72951. doi: 10.1371/journal.pone.0072951. eCollection 2013.
3
A systematic model of the LC-MS proteomics pipeline.
BMC Genomics. 2012;13 Suppl 6(Suppl 6):S2. doi: 10.1186/1471-2164-13-S6-S2. Epub 2012 Oct 26.

本文引用的文献

1
Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions.
J Am Soc Mass Spectrom. 1995 Apr;6(4):229-33. doi: 10.1016/1044-0305(95)00017-8.
2
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
3
Ultrahigh-speed calculation of isotope distributions.
Anal Chem. 1996 Jul 1;68(13):2027-30. doi: 10.1021/ac951158i.
4
MRCQuant- an accurate LC-MS relative isotopic quantification algorithm on TOF instruments.
BMC Bioinformatics. 2011 Mar 15;12:74. doi: 10.1186/1471-2105-12-74.
5
BPDA - a Bayesian peptide detection algorithm for mass spectrometry.
BMC Bioinformatics. 2010 Sep 29;11:490. doi: 10.1186/1471-2105-11-490.
6
Review of peak detection algorithms in liquid-chromatography-mass spectrometry.
Curr Genomics. 2009 Sep;10(6):388-401. doi: 10.2174/138920209789177638.
7
Optimal analysis of complex protein mass spectra.
Proteomics. 2009 Aug;9(15):3869-76. doi: 10.1002/pmic.200701064.
10
LC-MSsim--a simulation software for liquid chromatography mass spectrometry data.
BMC Bioinformatics. 2008 Oct 8;9:423. doi: 10.1186/1471-2105-9-423.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验