Suppr超能文献

Nascent-seq 表明果蝇中转录过程中广泛存在的前体 mRNA 剪接。

Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila.

机构信息

Howard Hughes Medical Institute, National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA.

出版信息

Genes Dev. 2011 Dec 1;25(23):2502-12. doi: 10.1101/gad.178962.111.

Abstract

To determine the prevalence of cotranscriptional splicing in Drosophila, we sequenced nascent RNA transcripts from Drosophila S2 cells as well as from Drosophila heads. Eighty-seven percent of the introns assayed manifest >50% cotranscriptional splicing. The remaining 13% are cotranscriptionally spliced poorly or slowly, with ∼3% being almost completely retained in nascent pre-mRNA. Although individual introns showed slight but statistically significant differences in splicing efficiency, similar global levels of splicing were seen from both sources. Importantly, introns with low cotranscriptional splicing efficiencies are present in the same primary transcript with efficiently spliced introns, indicating that splicing is intron-specific. The analysis also indicates that cotranscriptional splicing is less efficient for first introns, longer introns, and introns annotated as alternative. Finally, S2 cells expressing the slow RpII215(C4) mutant show substantially less intron retention than wild-type S2 cells.

摘要

为了确定果蝇中转录共剪接的普遍性,我们对果蝇 S2 细胞和果蝇头部的新生 RNA 转录本进行了测序。检测到的 87%的内含子表现出>50%的转录共剪接。其余 13%的内含子剪接不良或缓慢,其中约 3%的内含子在新生前体 mRNA 中几乎完全被保留。虽然单个内含子的剪接效率略有但具有统计学意义的差异,但来自两种来源的剪接效率都相似。重要的是,具有低转录共剪接效率的内含子与有效剪接的内含子存在于同一初级转录本中,表明剪接是内含子特异性的。该分析还表明,第一内含子、较长的内含子和被注释为替代的内含子的转录共剪接效率较低。最后,表达慢剪接 RpII215(C4)突变体的 S2 细胞显示出的内含子保留明显少于野生型 S2 细胞。

相似文献

1
Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila.
Genes Dev. 2011 Dec 1;25(23):2502-12. doi: 10.1101/gad.178962.111.
2
Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse.
RNA. 2012 Dec;18(12):2174-86. doi: 10.1261/rna.034090.112. Epub 2012 Oct 24.
3
Nascent-seq indicates widespread cotranscriptional RNA editing in Drosophila.
Mol Cell. 2012 Jul 13;47(1):27-37. doi: 10.1016/j.molcel.2012.05.002. Epub 2012 May 31.
4
Long-read sequencing of nascent RNA reveals coupling among RNA processing events.
Genome Res. 2018 Jul;28(7):1008-1019. doi: 10.1101/gr.232025.117. Epub 2018 Jun 14.
5
Pre-mRNA splicing and its cotranscriptional connections.
Trends Genet. 2023 Sep;39(9):672-685. doi: 10.1016/j.tig.2023.04.008. Epub 2023 May 24.
6
Cotranscriptional recruitment of yeast TRAMP complex to intronic sequences promotes optimal pre-mRNA splicing.
Nucleic Acids Res. 2014 Jan;42(1):643-60. doi: 10.1093/nar/gkt888. Epub 2013 Oct 3.
7
Splicing Kinetics and Coordination Revealed by Direct Nascent RNA Sequencing through Nanopores.
Mol Cell. 2020 Mar 5;77(5):985-998.e8. doi: 10.1016/j.molcel.2019.11.017. Epub 2019 Dec 12.
8
Numerous recursive sites contribute to accuracy of splicing in long introns in flies.
PLoS Genet. 2018 Aug 27;14(8):e1007588. doi: 10.1371/journal.pgen.1007588. eCollection 2018 Aug.
10
Balance between MAT2A intron detention and splicing is determined cotranscriptionally.
RNA. 2018 Jun;24(6):778-786. doi: 10.1261/rna.064899.117. Epub 2018 Mar 21.

引用本文的文献

1
The regulation and function of post-transcriptional RNA splicing.
Nat Rev Genet. 2025 Jun;26(6):378-394. doi: 10.1038/s41576-025-00836-z. Epub 2025 Apr 11.
2
3
Fully haplotyped genome assemblies of healthy individuals reveal variability in 5'ss strength and support by splicing regulatory proteins.
NAR Genom Bioinform. 2025 Apr 4;7(2):lqaf036. doi: 10.1093/nargab/lqaf036. eCollection 2025 Jun.
4
Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies.
Wiley Interdiscip Rev RNA. 2024 May-Jun;15(3):e1863. doi: 10.1002/wrna.1863.
5
RNA structure in alternative splicing regulation: from mechanism to therapy.
Acta Biochim Biophys Sin (Shanghai). 2024 Jul 22;57(1):3-21. doi: 10.3724/abbs.2024119.
6
Truncating the spliceosomal 'rope protein' Prp45 results in Htz1 dependent phenotypes.
RNA Biol. 2024 Jan;21(1):1-17. doi: 10.1080/15476286.2024.2348896. Epub 2024 May 6.
7
Analysis of a detailed multi-stage model of stochastic gene expression using queueing theory and model reduction.
Math Biosci. 2024 Jul;373:109204. doi: 10.1016/j.mbs.2024.109204. Epub 2024 May 6.
8
Post-transcriptional splicing can occur in a slow-moving zone around the gene.
Elife. 2024 Apr 5;12:RP91357. doi: 10.7554/eLife.91357.
9
RNA Pol II-dependent transcription efficiency fine-tunes A-to-I editing levels.
Genome Res. 2024 Mar 20;34(2):231-242. doi: 10.1101/gr.277686.123.
10
The Principles and Applications of High-Throughput Sequencing Technologies.
Dev Reprod. 2023 Apr;27(1):9-24. doi: 10.12717/DR.2023.27.1.9. Epub 2023 Mar 31.

本文引用的文献

1
Pause locally, splice globally.
Trends Cell Biol. 2011 Jun;21(6):328-35. doi: 10.1016/j.tcb.2011.03.002. Epub 2011 Apr 27.
2
The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing.
PLoS Biol. 2011 Jan 11;9(1):e1000573. doi: 10.1371/journal.pbio.1000573.
3
Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation.
Genome Res. 2011 Mar;21(3):390-401. doi: 10.1101/gr.111070.110. Epub 2010 Dec 16.
4
Splicing-dependent RNA polymerase pausing in yeast.
Mol Cell. 2010 Nov 24;40(4):582-93. doi: 10.1016/j.molcel.2010.11.005.
5
Global analysis of nascent RNA reveals transcriptional pausing in terminal exons.
Mol Cell. 2010 Nov 24;40(4):571-81. doi: 10.1016/j.molcel.2010.11.004.
6
U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation.
Nature. 2010 Dec 2;468(7324):664-8. doi: 10.1038/nature09479. Epub 2010 Sep 29.
8
Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila.
Science. 2010 Jan 15;327(5963):335-8. doi: 10.1126/science.1181421. Epub 2009 Dec 10.
9
"Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions.
Mol Cell. 2009 Oct 23;36(2):178-91. doi: 10.1016/j.molcel.2009.09.018.
10
Co-transcriptional splicing of constitutive and alternative exons.
RNA. 2009 Oct;15(10):1896-908. doi: 10.1261/rna.1714509. Epub 2009 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验