Suppr超能文献

一种灵活的可能性框架,用于在遗传研究中使用选定样本检测与次要表型的关联:在序列数据中的应用。

A flexible likelihood framework for detecting associations with secondary phenotypes in genetic studies using selected samples: application to sequence data.

机构信息

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Eur J Hum Genet. 2012 Apr;20(4):449-56. doi: 10.1038/ejhg.2011.211. Epub 2011 Dec 14.

Abstract

For most complex trait association studies using next-generation sequencing, in addition to the primary phenotype of interest, many clinically important secondary traits are also available, which can be analyzed to map susceptibility genes. Owing to high sequencing costs, most studies use selected samples, and the sampling mechanisms of these studies can be complicated. When the primary and secondary traits are correlated, analyses of secondary phenotypes can cause spurious associations in selected samples and existing methods are inadequate to adjust for them. To address this problem, a likelihood-based method, MULTI-TRAIT-ASSOCIATION (MTA) was developed. MTA is flexible and can be applied to any study with known sampling mechanisms. It also allows efficient inferences of genetic parameters. To investigate the power of MTA and different study designs, extensive simulations were performed under rigorous population genetic and phenotypic models. It is demonstrated that there are great benefits for analyzing secondary phenotypes in selected samples. In particular, using case-control samples and samples with extreme primary phenotypes can be more powerful than analyzing random samples of equivalent size. One major challenge for sequence-based association studies is that most data sets are not of sufficient size to be adequately powered. By applying MTA, data sets ascertained under distinct mechanisms or targeted at different primary traits can be jointly analyzed to map common phenotypes and greatly increase power. The combined analysis can be performed using freely available data sets from public repositories, for example, dbGaP. In conclusion, MTA will have an important role in dissecting the etiology of complex traits.

摘要

对于使用下一代测序进行的大多数复杂性状关联研究,除了主要关注的表型外,通常还可以获得许多临床重要的次要表型,这些表型可以进行分析以定位易感基因。由于测序成本高,大多数研究都使用了选择的样本,并且这些研究的采样机制可能很复杂。当主要表型和次要表型相关时,对次要表型的分析可能会在选择的样本中引起虚假关联,并且现有方法不足以对此进行调整。为了解决这个问题,开发了一种基于似然的方法,即多性状关联(MTA)。MTA 灵活,可以应用于具有已知采样机制的任何研究。它还允许对遗传参数进行有效的推断。为了研究 MTA 和不同研究设计的功效,在严格的群体遗传和表型模型下进行了广泛的模拟。结果表明,在选择的样本中分析次要表型具有很大的益处。特别是,使用病例对照样本和具有极端主要表型的样本比分析具有同等大小的随机样本更有优势。基于序列的关联研究的一个主要挑战是,大多数数据集的规模不足以充分发挥作用。通过应用 MTA,可以联合分析根据不同机制确定的数据集或针对不同主要表型的数据集,以定位常见表型并大大提高功效。联合分析可以使用公共存储库(例如 dbGaP)中的免费可用数据集来执行。总之,MTA 将在剖析复杂性状的病因学方面发挥重要作用。

相似文献

2
A unified method for detecting secondary trait associations with rare variants: application to sequence data.
PLoS Genet. 2012;8(11):e1003075. doi: 10.1371/journal.pgen.1003075. Epub 2012 Nov 15.
3
A flexible copula-based approach for the analysis of secondary phenotypes in ascertained samples.
Stat Med. 2020 Feb 28;39(5):517-543. doi: 10.1002/sim.8416. Epub 2019 Dec 23.
4
Secondary phenotype analysis in ascertained family designs: application to the Leiden longevity study.
Stat Med. 2017 Jun 30;36(14):2288-2301. doi: 10.1002/sim.7281. Epub 2017 Mar 16.
6
A novel association test for multiple secondary phenotypes from a case-control GWAS.
Genet Epidemiol. 2017 Jul;41(5):413-426. doi: 10.1002/gepi.22045. Epub 2017 Apr 10.
8
Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies.
Genet Epidemiol. 2011 Dec;35(8):790-9. doi: 10.1002/gepi.20628. Epub 2011 Sep 15.
9
Robust analysis of secondary phenotypes in case-control genetic association studies.
Stat Med. 2016 Oct 15;35(23):4226-37. doi: 10.1002/sim.6976. Epub 2016 May 30.
10
GMEPS: a fast and efficient likelihood approach for genome-wide mediation analysis under extreme phenotype sequencing.
Stat Appl Genet Mol Biol. 2022 Mar 11;21(1):sagmb-2021-0071. doi: 10.1515/sagmb-2021-0071.

引用本文的文献

1
A Cautionary Note on the Effects of Population Stratification Under an Extreme Phenotype Sampling Design.
Front Genet. 2019 May 3;10:398. doi: 10.3389/fgene.2019.00398. eCollection 2019.
2
A novel association test for multiple secondary phenotypes from a case-control GWAS.
Genet Epidemiol. 2017 Jul;41(5):413-426. doi: 10.1002/gepi.22045. Epub 2017 Apr 10.
3
A hybrid likelihood model for sequence-based disease association studies.
PLoS Genet. 2013;9(1):e1003224. doi: 10.1371/journal.pgen.1003224. Epub 2013 Jan 24.
4
A unified method for detecting secondary trait associations with rare variants: application to sequence data.
PLoS Genet. 2012;8(11):e1003075. doi: 10.1371/journal.pgen.1003075. Epub 2012 Nov 15.
5
SEQCHIP: a powerful method to integrate sequence and genotype data for the detection of rare variant associations.
Bioinformatics. 2012 Jul 1;28(13):1745-51. doi: 10.1093/bioinformatics/bts263. Epub 2012 May 3.

本文引用的文献

1
Testing for an unusual distribution of rare variants.
PLoS Genet. 2011 Mar;7(3):e1001322. doi: 10.1371/journal.pgen.1001322. Epub 2011 Mar 3.
2
Confounded by sequencing depth in association studies of rare alleles.
Genet Epidemiol. 2011 May;35(4):261-8. doi: 10.1002/gepi.20574.
3
Replication strategies for rare variant complex trait association studies via next-generation sequencing.
Am J Hum Genet. 2010 Dec 10;87(6):790-801. doi: 10.1016/j.ajhg.2010.10.025.
5
A covering method for detecting genetic associations between rare variants and common phenotypes.
PLoS Comput Biol. 2010 Oct 14;6(10):e1000954. doi: 10.1371/journal.pcbi.1000954.
6
Uncovering the roles of rare variants in common disease through whole-genome sequencing.
Nat Rev Genet. 2010 Jun;11(6):415-25. doi: 10.1038/nrg2779.
7
Pooled association tests for rare variants in exon-resequencing studies.
Am J Hum Genet. 2010 Jun 11;86(6):832-8. doi: 10.1016/j.ajhg.2010.04.005. Epub 2010 May 13.
8
Common disorders are quantitative traits.
Nat Rev Genet. 2009 Dec;10(12):872-8. doi: 10.1038/nrg2670. Epub 2009 Oct 27.
9
An evaluation of statistical approaches to rare variant analysis in genetic association studies.
Genet Epidemiol. 2010 Feb;34(2):188-93. doi: 10.1002/gepi.20450.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验