Department of Chemistry, The University of Tennessee, Knoxville, TN 37996, United States.
Chem Phys Lipids. 2012 Feb;165(2):207-15. doi: 10.1016/j.chemphyslip.2011.12.001. Epub 2011 Dec 8.
Signaling lipids control many of the most important biological pathways, typically by recruiting cognate protein binding targets to cell surfaces, thereby regulating both their function and subcellular localization. A critical family of signaling lipids is that of the phosphatidylinositol polyphosphates (PIP(n)s), which is composed of seven isomers that vary based on phosphorylation pattern. A key protein that is activated upon PIP(n) binding is Akt, which then plays important roles in regulating the cell cycle, and is thus aberrant in disease. Characterization of protein-PIP(n) binding interactions is hindered by the complexity of the membrane environment and of the PIP(n) structures. Herein, we describe two rapid assays of use for characterizing protein-PIP(n) binding interactions. First, a microplate-based binding assay was devised to characterize the binding of effectors to immobilized synthetic PIP(n) headgroup-biotin conjugates corresponding to all seven isomers. The assay was implemented for simultaneous analysis of Akt-PH domain, indicating PI(3,4,5)P(3) and PI(3,4)P(2) as the primary ligands. In addition, density-dependant studies indicated that the amount of ligand immobilized on the surface affected the amplitude of protein binding, but not the affinity, for Akt-PH. Since the PIP(n) ligand motifs used in this analysis lack the membrane environment and glycerolipid backbone, yet still exhibit high-affinity protein binding, these results narrow down the structural requirements for Akt recognition. Additionally, binding detection was also achieved through microarray analysis via the robotic pin printing of ligands onto glass slides in a miniaturized format. Here, fluorescence-based detection provided sensitive detection of binding using minimal amounts of materials. Due to their high-throughput and versatile attributes, these assays provide invaluable tools for probing and perturbing protein-membrane binding interactions.
信号脂质控制着许多最重要的生物途径,通常通过将同源蛋白结合靶标募集到细胞膜表面,从而调节它们的功能和亚细胞定位。信号脂质的一个关键家族是磷脂酰肌醇多磷酸盐(PIP(n)s),它由七种异构体组成,这些异构体的差异基于磷酸化模式。PIP(n)结合后被激活的关键蛋白是 Akt,它在调节细胞周期中发挥重要作用,因此在疾病中异常。蛋白质-PIP(n)结合相互作用的特征受膜环境和 PIP(n)结构的复杂性的阻碍。在此,我们描述了两种用于表征蛋白质-PIP(n)结合相互作用的快速测定法。首先,设计了一种基于微孔板的结合测定法,用于表征效应物与固定化合成 PIP(n)头部基团生物素缀合物的结合,这些缀合物对应于所有七种异构体。该测定法用于同时分析 Akt-PH 结构域,表明 PI(3,4,5)P(3)和 PI(3,4)P(2)是主要配体。此外,密度依赖性研究表明,固定在表面上的配体数量影响 Akt-PH 的蛋白结合幅度,但不影响亲和力。由于在此分析中使用的 PIP(n)配体基序缺乏膜环境和甘油磷脂骨架,但仍表现出与蛋白质的高亲和力结合,这些结果缩小了 Akt 识别的结构要求。此外,通过微阵列分析也可以实现结合检测,该分析通过机器人针印将配体以微型化格式打印到玻璃载玻片上。在这里,基于荧光的检测方法通过使用最少的材料提供了对结合的敏感检测。由于它们具有高通量和多功能的特性,这些测定法为探测和扰乱蛋白质-膜结合相互作用提供了非常有价值的工具。